Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

cupmtr(l) [redhat man page]

CUPMTR(l)								 )								 CUPMTR(l)

NAME
CUPMTR - overwrite the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N' SYNOPSIS
SUBROUTINE CUPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO ) CHARACTER SIDE, TRANS, UPLO INTEGER INFO, LDC, M, N COMPLEX AP( * ), C( LDC, * ), TAU( * ), WORK( * ) PURPOSE
CUPMTR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by CHPTRD using packed storage: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). ARGUMENTS
SIDE (input) CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. UPLO (input) CHARACTER*1 = 'U': Upper triangular packed storage used in previous call to CHPTRD; = 'L': Lower triangular packed storage used in previous call to CHPTRD. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. AP (input) COMPLEX array, dimension (M*(M+1)/2) if SIDE = 'L' (N*(N+1)/2) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by CHPTRD. AP is modified by the routine but restored on exit. TAU (input) COMPLEX array, dimension (M-1) if SIDE = 'L' or (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CHPTRD. C (input/output) COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace) COMPLEX array, dimension (N) if SIDE = 'L' (M) if SIDE = 'R' INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK version 3.0 15 June 2000 CUPMTR(l)

Check Out this Related Man Page

CUNMR2(l)								 )								 CUNMR2(l)

NAME
CUNMR2 - overwrite the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q' if SIDE = 'R' and TRANS = 'C', SYNOPSIS
SUBROUTINE CUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO ) CHARACTER SIDE, TRANS INTEGER INFO, K, LDA, LDC, M, N COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) PURPOSE
CUNMR2 overwrites the general complex m-by-n matrix C with Q * C if SIDE = 'L' and TRANS = 'N', or Q'* C if SIDE = 'L' and TRANS = 'C', or C * Q if SIDE = 'R' and TRANS = 'N', or C * Q' if SIDE = 'R' and TRANS = 'C', where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(1)' H(2)' . . . H(k)' as returned by CGERQF. Q is of order m if SIDE = 'L' and of order n if SIDE = 'R'. ARGUMENTS
SIDE (input) CHARACTER*1 = 'L': apply Q or Q' from the Left = 'R': apply Q or Q' from the Right TRANS (input) CHARACTER*1 = 'N': apply Q (No transpose) = 'C': apply Q' (Conjugate transpose) M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A (input) COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGERQF in the last k rows of its array argument A. A is modified by the routine but restored on exit. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,K). TAU (input) COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGERQF. C (input/output) COMPLEX array, dimension (LDC,N) On entry, the m-by-n matrix C. On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace) COMPLEX array, dimension (N) if SIDE = 'L', (M) if SIDE = 'R' INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value LAPACK version 3.0 15 June 2000 CUNMR2(l)
Man Page