Linux & Unix Commands - Search Man Pages

Select Section of Man Page:

Select Man Page Repository:

CHBGVD(l)) CHBGVD(l)NAMECHBGVD - compute all the eigenvalues, and optionally, the eigenvectors of a complex gener- alized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*xSYNOPSISSUBROUTINE CHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO ) CHARACTER JOBZ, UPLO INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK, LWORK, N INTEGER IWORK( * ) REAL RWORK( * ), W( * ) COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ), Z( LDZ, * )PURPOSECHBGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex gener- alized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arith- metic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.ARGUMENTSJOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N (input) INTEGER The order of the matrices A and B. N >= 0. KA (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of sub- diagonals if UPLO = 'L'. KA >= 0. KB (input) INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of sub- diagonals if UPLO = 'L'. KB >= 0. AB (input/output) COMPLEX array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th col- umn of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KA+1. BB (input/output) COMPLEX array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th col- umn of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by CPBSTF. LDBB (input) INTEGER The leading dimension of the array BB. LDBB >= KB+1. W (output) REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) COMPLEX array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO=0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N. If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace/output) REAL array, dimension (LRWORK) On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. LRWORK (input) INTEGER The dimension of array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >= N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. If LRWORK =-1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the RWORK array, and no error message related to LRWORK is issued by XERBLA. IWORK (workspace/output) INTEGER array, dimension (LIWORK) On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of array IWORK. If JOBZ = 'N' or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK =-1, then a workspace query is assumed; the routine only calculates the optimal size of the IWORK array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i off-diagonal elements of an intermedi- ate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.-iFURTHER DETAILSBased on contributions by Mark Fahey, Department of Mathematics, Univ. of Kentucky, USALAPACK version 3.015 June 2000 CHBGVD(l)

All times are GMT -4. The time now is 08:39 PM.