Unix/Linux Go Back    

RedHat 9 (Linux i386) - man page for pdl::gslsf::coulomb (redhat section 3)

Linux & Unix Commands - Search Man Pages
Man Page or Keyword Search:   man
Select Man Page Set:       apropos Keyword Search (sections above)

COULOMB(3)		       User Contributed Perl Documentation		       COULOMB(3)

       PDL::GSLSF::COULOMB - PDL interface to GSL Special Functions

       This is an interface to the Special Function package present in the GNU Scientific


	 Signature: (double x(); double [o]y(); double [o]e(); int n; int l; double z)

       Normalized Hydrogenic bound states. Radial dipendence.


	 Signature: (double x(); double [o]fc(n); double [o]fcp(n); double [o]gc(n); double [o]gcp(n); int [o]ovfw(); double [o]fe(n); double [o]ge(n); double lam_min; int kmax=>n; double eta)

	Coulomb wave functions F_{lam_F}(eta,x), G_{lam_G}(eta,x) and their derivatives; lam_G := lam_F - k_lam_G. if ovfw is signaled then F_L(eta,x)	=  fc[k_L] * exp(fe) and similar.


	 Signature: (double x(); double [o]fc(n); int [o]ovfw(); double [o]fe(n); double lam_min; int kmax=>n; double eta)

	Coulomb wave function divided by the argument, F(xi, eta)/xi. This is the function which reduces to spherical Bessel functions in the limit eta->0.


	 Signature: (double L(); double eta();	double [o]y(); double [o]e())

       Coulomb wave function normalization constant. [Abramowitz+Stegun 14.1.8, 14.1.9].

       This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.trieste.it> All rights
       reserved. There is no warranty. You are allowed to redistribute this software / documenta-
       tion under certain conditions. For details, see the file COPYING in the PDL distribution.
       If this file is separated from the PDL distribution, the copyright notice should be
       included in the file.

       The GSL SF modules were written by G. Jungman.

perl v5.8.0				    2003-01-29				       COULOMB(3)
Unix & Linux Commands & Man Pages : ©2000 - 2018 Unix and Linux Forums

All times are GMT -4. The time now is 11:37 AM.