ipmipower(8) System Commands ipmipower(8)
NAME
ipmipower - IPMI power control utility
SYNOPSIS
ipmipower [OPTION...]
DESCRIPTION
ipmipower allows users to remotely power on, off, cycle, hard reset, get a power status query, perform a pulse diagnostic interrupt, or
initiate a soft-shutdown of the OS via ACPI through the IPMI over LAN protocol.
When a power command (--on, --off, --cycle, --reset, --stat, --pulse, or --soft) is specified on the command line, ipmipower will attempt
to run the power command on all hostnames listed on the command line then exit.
If no power commands are specified on the command line, ipmipower will run in interactive mode. Interactive mode gives the user a command
line interface to enter various commands. Details of the interactive command line interface can be found below under INTERACTIVE COMMANDS.
Listed below are general IPMI options, tool specific options, trouble shooting information, workaround information, examples, and known
issues. For a general introduction to FreeIPMI please see freeipmi(7).
GENERAL OPTIONS
The following options are general options for configuring IPMI communication and executing general tool commands.
-D IPMIDRIVER, --driver-type=IPMIDRIVER
Specify the driver type to use instead of doing an auto selection. The currently available outofband drivers are LAN and LAN_2_0,
which perform IPMI 1.5 and IPMI 2.0 respectively.
-h IPMIHOST1,IPMIHOST2,..., --hostname=IPMIHOST1,IPMIHOST2,...
Specify the remote host(s) to communicate with. Multiple hostnames may be separated by comma or may be specified in a range format;
see HOSTRANGED SUPPORT below.
-u USERNAME, --username=USERNAME
Specify the username to use when authenticating with the remote host. If not specified, a null (i.e. anonymous) username is
assumed. The user must have atleast OPERATOR privileges to run the --on, --off, --reset, --cycle, --pulse, or --soft power control
commands. The user must have atleast USER privileges to determine the power status of the machine through --stat.
-p PASSWORD, --password=PASSWORD
Specify the password to use when authenticationg with the remote host. If not specified, a null password is assumed. Maximum pass-
word length is 16 for IPMI 1.5 and 20 for IPMI 2.0.
-P, --password-prompt
Prompt for password to avoid possibility of listing it in process lists.
-k K_G, --k-g=K_G
Specify the K_g BMC key to use when authenticating with the remote host for IPMI 2.0. If not specified, a null key is assumed. To
input the key in hexadecimal form, prefix the string with '0x'. E.g., the key 'abc' can be entered with the either the string 'abc'
or the string '0x616263'
-K, --k-g-prompt
Prompt for k-g to avoid possibility of listing it in process lists.
--session-timeout=MILLISECONDS
Specify the session timeout in milliseconds. Defaults to 20000 milliseconds (20 seconds) if not specified.
--retransmission-timeout=MILLISECONDS
Specify the packet retransmission timeout in milliseconds. Defaults to 400 milliseconds (0.4 seconds) if not specified.
-a AUTHENTICATION-TYPE, --authentication-type=AUTHENTICATION-TYPE
Specify the IPMI 1.5 authentication type to use. The currently available authentication types are NONE, STRAIGHT_PASSWORD_KEY, MD2,
and MD5. Defaults to MD5 if not specified.
-I CIPHER-SUITE-ID, --cipher-suite-id=CIPHER-SUITE-ID
Specify the IPMI 2.0 cipher suite ID to use. The Cipher Suite ID identifies a set of authentication, integrity, and confidentiality
algorithms to use for IPMI 2.0 communication. The authentication algorithm identifies the algorithm to use for session setup, the
integrity algorithm identifies the algorithm to use for session packet signatures, and the confidentiality algorithm identifies the
algorithm to use for payload encryption. Defaults to cipher suite ID 3 if not specified. The following cipher suite ids are cur-
rently supported:
0 - Authentication Algorithm = None; Integrity Algorithm = None; Confidentiality Algorithm = None
1 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm = None; Confidentiality Algorithm = None
2 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm = HMAC-SHA1-96; Confidentiality Algorithm = None
3 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm = HMAC-SHA1-96; Confidentiality Algorithm = AES-CBC-128
6 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = None; Confidentiality Algorithm = None
7 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = HMAC-MD5-128; Confidentiality Algorithm = None
8 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = HMAC-MD5-128; Confidentiality Algorithm = AES-CBC-128
11 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = MD5-128; Confidentiality Algorithm = None
12 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = MD5-128; Confidentiality Algorithm = AES-CBC-128
17 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm = HMAC_SHA256_128; Confidentiality Algorithm = AES-CBC-128
-l PRIVILEGE-LEVEL, --privilege-level=PRIVILEGE-LEVEL
Specify the privilege level to be used. The currently available privilege levels are USER, OPERATOR, and ADMIN. Defaults to OPERATOR
if not specified.
--config-file=FILE
Specify an alternate configuration file.
-W WORKAROUNDS, --workaround-flags=WORKAROUNDS
Specify workarounds to vendor compliance issues. Multiple workarounds can be specified separated by commas. A special command line
flag of "none", will indicate no workarounds (may be useful for overriding configured defaults). See WORKAROUNDS below for a list of
available workarounds.
--debug
Turn on debugging.
-?, --help
Output a help list and exit.
--usage
Output a usage message and exit.
-V, --version
Output the program version and exit.
IPMIPOWER OPTIONS
The following options are specific to ipmipower.
-n, --on
Power on the target hosts.
-f, --off
Power off the target hosts.
-c, --cycle
Power cycle the target hosts.
-r, --reset
Reset the target hosts.
-s, --stat
Get power status of the target hosts.
--pulse
Send power diagnostic interrupt to target hosts.
--soft Initiate a soft-shutdown of the OS via ACPI.
--on-if-off
The IPMI specification does not require the power cycle or hard reset commands to turn on a machine that is currently powered off.
This option will force ipmipower to issue a power on command instead of a power cycle or hard reset command if the remote machine's
power is currently off.
--wait-until-on
The IPMI specification allows power on commands to return prior to the power on actually taking place. This option will force
ipmipower to regularly query the remote BMC and return only after the machine has powered on.
--wait-until-off
The IPMI specification allows power off commands to return prior the power off actually taking place. This option will force
ipmipower to regularly query the remote BMC and return only after the machine has powered off.
IPMIPOWER ADVANCED NETWORK OPTIONS
The following options are used to change the networking behavior of ipmipower.
--retransmission-wait-timeout=MILLISECONDS
Specify the retransmission wait timeout length in milliseconds. The retransmission wait timeout is similar to the retransmission
timeout above, but is used specifically for power completion verification with the --wait-until-on and --wait-until-off options.
Defaults to 500 milliseconds (0.5 seconds).
--retransmission-backoff-count=COUNT
Specify the retransmission backoff count for retransmissions. After ever COUNT retransmissions, the retransmission timeout length
will be increased by another factor. Defaults to 8.
--ping-interval=MILLISECONDS
Specify the ping interval length in milliseconds. When running in interactive mode, RMCP (Remote Management Control Protocol) dis-
covery messages will be sent to all configured remote hosts every MILLISECONDS to confirm their support of IPMI. Power commands can-
not be sent to a host until it is discovered (or re-discovered if previously lost). Defaults to 5000 milliseconds (5 seconds). Ping
discovery messages can be disabled by setting this valu to 0. RMCP ping discovery messages are automatically disabled in non-inter-
active mode.
--ping-timeout=MILLISECONDS
Specify the ping timeout length in milliseconds. When running in interactive mode, RMCP (Remote Management Control Protocol) mes-
sages discovery will be sent to all configured remote hosts to confirm their support of IPMI. A remote host is considered undiscov-
ered if the host does not respond in MILLISECONDS time. Defaults to 30000 milliseconds (30 seconds). The ping timeout cannot be
larger than the ping interval.
--ping-packet-count=COUNT
Specify the ping packet count size. Defaults to 10. See the --ping-percent-fR option below for more information on this option.
--ping-percent=PERCENT
Specify the ping percent value. Defaults to 50. Since IPMI is based on UDP, it is difficult for ipmipower to distinguish between a
missing machine and a bad (or heavily loaded) network connection in interactive mode. when running in interactive mode. For example,
suppose a link consistently drops 80% of the packets to a particular machine. The power control operation may have difficulty com-
pleting, although a recent pong response from RMCP makes ipmipower believe the machine is up and functioning properly. The ping
packet acount and percent options are used to alleviate this problem. Ipmipower will monitor RMCP ping packets in packet count
chunks. If ipmipower does not receive a response to greater than ping percent of those packets, ipmipower will assume the link to
this node is bad and will not send power control operations to that node until the connection is determined to be reliable. This
heuristic can be disabled by setting either the ping packet count or ping percent to 0. This feature is not used if ping interval is
set to 0.
--ping-consec-count=COUNT
Specify the ping consecutive count. This is another heuristic used to determine if a node should be considered discovered, undiscov-
ered, or with a bad connection. If a valid RMCP pong response was received for the last COUNT ping packets, a node will be consid-
ered discovered, regardless of other heuristics listed above. Defaults to 5. This heuristic can be disabled by setting this value to
0. This feature is not used if other ping features described above are disabled.
HOSTRANGED OPTIONS
The following options manipulate hostranged output. See HOSTRANGED SUPPORT below for additional information on hostranges.
-B, --buffer-output
Buffer hostranged output. For each node, buffer standard output until the node has completed its IPMI operation. When specifying
this option, data may appear to output slower to the user since the the entire IPMI operation must complete before any data can be
output. See HOSTRANGED SUPPORT below for additional information.
-C, --consolidate-output
Consolidate hostranged output. The complete standard output from every node specified will be consolidated so that nodes with iden-
tical output are not output twice. A header will list those nodes with the consolidated output. When this option is specified, no
output can be seen until the IPMI operations to all nodes has completed. If the user breaks out of the program early, all currently
consolidated output will be dumped. See HOSTRANGED SUPPORT below for additional information.
-F NUM, --fanout=NUM
Specify multiple host fanout. Indicates the maximum number of power control operations that can be executed in parallel.
-E, --eliminate
Eliminate hosts determined as undetected by ipmidetect. This attempts to remove the common issue of hostranged execution timing out
due to several nodes being removed from service in a large cluster. The ipmidetectd daemon must be running on the node executing the
command.
--always-prefix
Always prefix output, even if only one host is specified or communicating in-band. This option is primarily useful for scripting
purposes. Option will be ignored if specified with the -C option.
INTERACTIVE COMMANDS
ipmipower provides the following interactive commands at the ipmipower> prompt. Before any power commands (on, off, cycle, reset, stat,
pulse, or soft) can be used, hostnames must be configured into ipmipower, either through the command prompt or the hostname command below.
The parameters and options to the commands below mirror their appropriate command line options.
hostname [IPMIHOST(s)]
Specify a new set of hosts. No input to unconfigure all hosts.
username [USERNAME]
Specify a new username. No input for null username.
password [PASSWORD]
Specify a new password. No input for null password.
k_g [K_G]
Specify a new K_g BMC Key. No input for null key. Prefix with '0x' to enter a key in hexadecimal
ipmi-version IPMIVERSION
Specify the ipmi version to use.
session-timeout MILLISECONDS
Specify a new session timeout length.
retransmission-timeout MILLISECONDS
Specify a new retransmiision timeout length.
authentication-type AUTHENTICATION-TYPE
Specify the authentication type to use.
cipher-suite-id CIPHER-SUITE-ID
Specify the cipher suite id to use.
privilege-level PRIVILEGE-LEVEL
Specify the privilege level to use.
workaround-flags WORKAROUNDS
Specify workaround flags.
debug [on|off]
Toggle debug output.
on [IPMIHOST(s)]
Turn on all configured hosts or specified hosts.
off [IPMIHOST(s)]
Turn off all configured hosts or specified hosts.
cycle [IPMIHOST(s)]
Power cycle all configured hosts or specified hosts.
reset [IPMIHOST(s)]
Reset all configured hosts or specified hosts.
stat [IPMIHOST(s)]
Query power status for all configured hosts or specified hosts.
pulse [IPMIHOST(s)]
Pulse diagnostic interrupt all configured hosts or specified hosts.
soft [IPMIHOST(s)]
Initiate a soft-shutdown for all configured hosts or specified hosts.
identify-on [IPMIHOST(s)]
Turn on physical system identification.
identify-off [IPMIHOST(s)]
Turn off physical system identification.
identify-status [IPMIHOST(s)]
Query physical system identification status.
on-if-off [on|off]
Toggle on-if-off functionality.
wait-until-on [on|off]
Toggle wait-until-on functionality.
wait-until-off [on|off]
Toggle wait-until-off functionality.
retransmission-wait-timeout MILLISECONDS
Specify a new retransmission wait timeout length.
retransmission-backoff-count COUNT
Specify a new retransmission backoff count.
ping-interval MILLISECONDS
Specify a new ping interval length.
ping-timeout MILLISECONDS
Specify a new ping timeout length.
ping-packet-count COUNT
Specify a new ping packet count.
ping-percent PERCENT
Specify a new ping percent.
ping-consec-count COUNT
Specify a new ping consec count.
buffer-output [on|off]
Toggle buffer-output functionality.
consolidate-output [on|off]
Toggle consolidate-output functionality.
fanout COUNT
Specify a fanout.
always-prefix [on|off]
Toggle always-prefix functionality.
help Output help menu.
version
Output version.
config Output the current configuration.
quit Quit program. ipmipower.
HOSTRANGED SUPPORT
Multiple hosts can be input either as an explicit comma separated lists of hosts or a range of hostnames in the general form: prefix[n-m,l-
k,...], where n < m and l < k, etc. The later form should not be confused with regular expression character classes (also denoted by []).
For example, foo[19] does not represent foo1 or foo9, but rather represents a degenerate range: foo19.
This range syntax is meant only as a convenience on clusters with a prefixNN naming convention and specification of ranges should not be
considered necessary -- the list foo1,foo9 could be specified as such, or by the range foo[1,9].
Some examples of range usage follow:
foo[01-05] instead of foo01,foo02,foo03,foo04,foo05
foo[7,9-10] instead of foo7,foo9,foo10
foo[0-3] instead of foo0,foo1,foo2,foo3
As a reminder to the reader, some shells will interpret brackets ([ and ]) for pattern matching. Depending on your shell, it may be neces-
sary to enclose ranged lists within quotes.
When multiple hosts are specified by the user, a socket will be created for each host and polled on, effectively allowing communication to
all hosts in parallel. This will allow communication to large numbers of nodes far more quickly than if done in serial. The -F option can
configure the number of nodes that can be communicated with in parallel at the same time.
By default, standard output from each node specified will be output with the hostname prepended to each line. Although this output is read-
able in many situations, it may be difficult to read in other situations. For example, output from multiple nodes may be mixed together.
The -B and -C options can be used to change this default.
EXAMPLES
Determine the power status of foo[0-2] with null username and password
ipmipower -h foo[0-2] --stat
Determine the power status of foo[0-2] with non-null username and password
ipmipower -h foo[0-2] -u foo -p bar --stat
Hard reset nodes foo[0-2] with non-null username and password
ipmipower -h foo[0-2] -u foo -p bar --reset
GENERAL TROUBLESHOOTING
Most often, IPMI problems are due to configuration problems.
IPMI over LAN problems involve a misconfiguration of the remote machine's BMC. Double check to make sure the following are configured
properly in the remote machine's BMC: IP address, MAC address, subnet mask, username, user enablement, user privilege, password, LAN privi-
lege, LAN enablement, and allowed authentication type(s). For IPMI 2.0 connections, double check to make sure the cipher suite privilege(s)
and K_g key are configured properly. The bmc-config(8) tool can be used to check and/or change these configuration settings.
In addition to the troubleshooting tips below, please see WORKAROUNDS below to also if there are any vendor specific bugs that have been
discovered and worked around.
Listed below are many of the common issues for error messages. For additional support, please e-mail the <freeipmi-users@gnu.org> mailing
list.
"username invalid" - The username entered (or a NULL username if none was entered) is not available on the remote machine. It may also be
possible the remote BMC's username configuration is incorrect.
"password invalid" - The password entered (or a NULL password if none was entered) is not correct. It may also be possible the password for
the user is not correctly configured on the remote BMC.
"password verification timeout" - Password verification has timed out. A "password invalid" error (described above) or a generic "session
timeout" (described below) occurred. During this point in the protocol it cannot be differentiated which occurred.
"k_g invalid" - The K_g key entered (or a NULL K_g key if none was entered) is not correct. It may also be possible the K_g key is not cor-
rectly configured on the remote BMC.
"privilege level insufficient" - An IPMI command requires a higher user privilege than the one authenticated with. Please try to authenti-
cate with a higher privilege. This may require authenticating to a different user which has a higher maximum privilege.
"privilege level cannot be obtained for this user" - The privilege level you are attempting to authenticate with is higher than the maximum
allowed for this user. Please try again with a lower privilege. It may also be possible the maximum privilege level allowed for a user is
not configured properly on the remote BMC.
"authentication type unavailable for attempted privilege level" - The authentication type you wish to authenticate with is not available
for this privilege level. Please try again with an alternate authentication type or alternate privilege level. It may also be possible the
available authentication types you can authenticate with are not correctly configured on the remote BMC.
"cipher suite id unavailable" - The cipher suite id you wish to authenticate with is not available on the remote BMC. Please try again with
an alternate cipher suite id. It may also be possible the available cipher suite ids are not correctly configured on the remote BMC.
"ipmi 2.0 unavailable" - IPMI 2.0 was not discovered on the remote machine. Please try to use IPMI 1.5 instead.
"connection timeout" - Initial IPMI communication failed. A number of potential errors are possible, including an invalid hostname speci-
fied, an IPMI IP address cannot be resolved, IPMI is not enabled on the remote server, the network connection is bad, etc. Please verify
configuration and connectivity.
"session timeout" - The IPMI session has timed out. Please reconnect. If this error occurs often, you may wish to increase the retransmis-
sion timeout. Some remote BMCs are considerably slower than others.
IPMIPOWER TROUBLESHOOTING
When powering on a powered off machine, the client must have a means by which to resolve the MAC address of the remote machine's ethernet
card. While most modern IPMI solutions support the ability to ARP and resolve addresses when the machine is powered off, some older
machines do not. This is typically solved in one of two ways:
1) Enable gratuitous ARPs on the remote machine. The remote machine will send out a gratuitous ARP, which advertises the ethernet IP and
MAC address so that other machines on the network this information their local ARP cache. For large clusters, this method is not recom-
mended since gratuitous ARPs can flood the network with unnecessary traffic.
2) Permanently store the remote machine's MAC address in the local ARP cache. This is the more common approach on large clusters.
Other methods are listed in the IPMI specification.
WORKAROUNDS
With so many different vendors implementing their own IPMI solutions, different vendors may implement their IPMI protocols incorrectly. The
following describes a number of workarounds currently available to handle discovered compliance issues. When possible, workarounds have
been implemented so they will be transparent to the user. However, some will require the user to specify a workaround be used via the -W
option.
The hardware listed below may only indicate the hardware that a problem was discovered on. Newer versions of hardware may fix the problems
indicated below. Similar machines from vendors may or may not exhibit the same problems. Different vendors may license their firmware from
the same IPMI firmware developer, so it may be worthwhile to try workarounds listed below even if your motherboard is not listed.
If you believe your hardware has an additional compliance issue that needs a workaround to be implemented, please contact the FreeIPMI
maintainers on <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.
authcap - This workaround flag will skip early checks for username capabilities, authentication capabilities, and K_g support and allow
IPMI authentication to succeed. It works around multiple issues in which the remote system does not properly report username capabilities,
authentication capabilities, or K_g status. Those hitting this issue may see "username invalid", "authentication type unavailable for
attempted privilege level", or "k_g invalid" errors. Issue observed on Asus P5M2/P5MT-R/RS162-E4/RX4, Intel SR1520ML/X38ML, and Sun Fire
2200/4150/4450 with ELOM.
idzero - This workaround flag will allow empty session IDs to be accepted by the client. It works around IPMI sessions that report empty
session IDs to the client. Those hitting this issue may see "session timeout" errors. Issue observed on Tyan S2882 with M3289 BMC.
unexpectedauth - This workaround flag will allow unexpected non-null authcodes to be checked as though they were expected. It works around
an issue when packets contain non-null authentication data when they should be null due to disabled per-message authentication. Those hit-
ting this issue may see "session timeout" errors. Issue observed on Dell PowerEdge 2850,SC1425. Confirmed fixed on newer firmware.
forcepermsg - This workaround flag will force per-message authentication to be used no matter what is advertised by the remote system. It
works around an issue when per-message authentication is advertised as disabled on the remote system, but it is actually required for the
protocol. Those hitting this issue may see "session timeout" errors. Issue observed on IBM eServer 325.
endianseq - This workaround flag will flip the endian of the session sequence numbers to allow the session to continue properly. It works
around IPMI 1.5 session sequence numbers that are the wrong endian. Those hitting this issue may see "session timeout" errors. Issue
observed on some Sun ILOM 1.0/2.0 (depends on service processor endian).
intel20 - This workaround flag will work around several Intel IPMI 2.0 authentication issues. The issues covered include padding of user-
names, and password truncation if the authentication algorithm is HMAC-MD5-128. Those hitting this issue may see "username invalid", "pass-
word invalid", or "k_g invalid" errors. Issue observed on Intel SE7520AF2 with Intel Server Management Module (Professional Edition).
supermicro20 - This workaround flag will work around several Supermicro IPMI 2.0 authentication issues on motherboards w/ Peppercon IPMI
firmware. The issues covered include handling invalid length authentication codes. Those hitting this issue may see "password invalid"
errors. Issue observed on Supermicro H8QME with SIMSO daughter card. Confirmed fixed on newerver firmware.
sun20 - This workaround flag will work work around several Sun IPMI 2.0 authentication issues. The issues covered include invalid lengthed
hash keys, improperly hashed keys, and invalid cipher suite records. Those hitting this issue may see "password invalid" or "bmc error"
errors. Issue observed on Sun Fire 4100/4200/4500 with ILOM. This workaround automatically includes the "opensesspriv" workaround.
opensesspriv - This workaround flag will slightly alter FreeIPMI's IPMI 2.0 connection protocol to workaround an invalid hashing algorithm
used by the remote system. The privilege level sent during the Open Session stage of an IPMI 2.0 connection is used for hashing keys
instead of the privilege level sent during the RAKP1 connection stage. Those hitting this issue may see "password invalid", "k_g invalid",
or "bad rmcpplus status code" errors. Issue observed on Sun Fire 4100/4200/4500 with ILOM, Inventec 5441/Dell Xanadu II, Supermicro X8DTH,
Supermicro X8DTG, Intel S5500WBV/Penguin Relion 700, Intel S2600JF/Appro 512X, and Quanta QSSC-S4R//Appro GB812X-CN. This workaround is
automatically triggered with the "sun20" workaround.
integritycheckvalue - This workaround flag will work around an invalid integrity check value during an IPMI 2.0 session establishment when
using Cipher Suite ID 0. The integrity check value should be 0 length, however the remote motherboard responds with a non-empty field.
Those hitting this issue may see "k_g invalid" errors. Issue observed on Supermicro X8DTG, Supermicro X8DTU, and Intel S5500WBV/Penguin
Relion 700, and Intel S2600JF/Appro 512X.
No IPMI 1.5 Support - Some motherboards that support IPMI 2.0 have been found to not support IPMI 1.5. Those hitting this issue may see
"ipmi 2.0 unavailable" or "connection timeout" errors. This issue can be worked around by using IPMI 2.0 instead of IPMI 1.5 by specifying
--driver-address=LAN_2_0. Issue observed on HP Proliant DL 145.
KNOWN ISSUES
On older operating systems, if you input your username, password, and other potentially security relevant information on the command line,
this information may be discovered by other users when using tools like the ps(1) command or looking in the /proc file system. It is gener-
ally more secure to input password information with options like the -P or -K options. Configuring security relevant information in the
FreeIPMI configuration file would also be an appropriate way to hide this information.
In order to prevent brute force attacks, some BMCs will temporarily "lock up" after a number of remote authentication errors. You may need
to wait awhile in order to this temporary "lock up" to pass before you may authenticate again.
IPMI specifications do not require BMCs to perform a power control operation before returning a completion code to the caller. Therefore,
it is possible for ipmipower to return power status queries opposite of what you are expecting. For example, if a "power off" operation is
performed, a BMC may return a successful completion code to ipmipower before the "power off" operation is actually performed. Subsequent
power status queries may return "on" for several seconds, until the BMC actually performs the "power off" operation.
REPORTING BUGS
Report bugs to <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.
COPYRIGHT
Copyright (C) 2007-2012 Lawrence Livermore National Security, LLC.
Copyright (C) 2003-2007 The Regents of the University of California.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
SEE ALSO
freeipmi.conf(5), freeipmi(7), bmc-config(8)
http://www.gnu.org/software/freeipmi/
ipmipower 1.1.5 2012-06-15 ipmipower(8)