Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

parse::eyapp::node(3) [osx man page]

Parse::Eyapp::Node(3)					User Contributed Perl Documentation				     Parse::Eyapp::Node(3)

NAME
Parse::Eyapp::Node - The nodes of the Syntax Trees SYNOPSIS
use Parse::Eyapp; use Parse::Eyapp::Treeregexp; sub TERMINAL::info { $_[0]{attr} } my $grammar = q{ %right '=' # Lowest precedence %left '-' '+' # + and - have more precedence than = Disambiguate a-b-c as (a-b)-c %left '*' '/' # * and / have more precedence than + Disambiguate a/b/c as (a/b)/c %left NEG # Disambiguate -a-b as (-a)-b and not as -(a-b) %tree # Let us build an abstract syntax tree ... %% line: exp <%name EXPRESSION_LIST + ';'> { $_[1] } /* list of expressions separated by ';' */ ; /* The %name directive defines the name of the class to which the node being built belongs */ exp: %name NUM NUM | %name VAR VAR | %name ASSIGN VAR '=' exp | %name PLUS exp '+' exp | %name MINUS exp '-' exp | %name TIMES exp '*' exp | %name DIV exp '/' exp | %name UMINUS '-' exp %prec NEG | '(' exp ')' { $_[2] } /* Let us simplify a bit the tree */ ; %% sub _Error { die "Syntax error near ".($_[0]->YYCurval?$_[0]->YYCurval:"end of file")." " } sub _Lexer { my($parser)=shift; # The parser object for ($parser->YYData->{INPUT}) { # Topicalize m{Gs+}gc; $_ eq '' and return('',undef); m{G([0-9]+(?:.[0-9]+)?)}gc and return('NUM',$1); m{G([A-Za-z][A-Za-z0-9_]*)}gc and return('VAR',$1); m{G(.)}gcs and return($1,$1); } return('',undef); } sub Run { my($self)=shift; $self->YYParse( yylex => &_Lexer, yyerror => &_Error, ); } }; # end grammar our (@all, $uminus); Parse::Eyapp->new_grammar( # Create the parser package/class input=>$grammar, classname=>'Calc', # The name of the package containing the parser firstline=>7 # String $grammar starts at line 7 (for error diagnostics) ); my $parser = Calc->new(); # Create a parser $parser->YYData->{INPUT} = "2*-3+b*0;--2 "; # Set the input my $t = $parser->Run; # Parse it! local $Parse::Eyapp::Node::INDENT=2; print "Syntax Tree:",$t->str; # Let us transform the tree. Define the tree-regular expressions .. my $p = Parse::Eyapp::Treeregexp->new( STRING => q{ { # Example of support code my %Op = (PLUS=>'+', MINUS => '-', TIMES=>'*', DIV => '/'); } constantfold: /TIMES|PLUS|DIV|MINUS/:bin(NUM($x), NUM($y)) => { my $op = $Op{ref($bin)}; $x->{attr} = eval "$x->{attr} $op $y->{attr}"; $_[0] = $NUM[0]; } uminus: UMINUS(NUM($x)) => { $x->{attr} = -$x->{attr}; $_[0] = $NUM } zero_times_whatever: TIMES(NUM($x), .) and { $x->{attr} == 0 } => { $_[0] = $NUM } whatever_times_zero: TIMES(., NUM($x)) and { $x->{attr} == 0 } => { $_[0] = $NUM } }, OUTPUTFILE=> 'main.pm' ); $p->generate(); # Create the tranformations $t->s($uminus); # Transform UMINUS nodes $t->s(@all); # constant folding and mult. by zero local $Parse::Eyapp::Node::INDENT=0; print " Syntax Tree after transformations: ",$t->str," "; METHODS
The "Parse::Eyapp::Node" objects represent the nodes of the syntax tree. All the node classes build by %tree and %metatree directives inherit from "Parse::Eyapp::Node" and consequently have acces to the methods provided in such module. The examples used in this document can be found in the directory "examples/Node" accompanying the distribution of Parse::Eyapp. Parse::Eyapp::Node->new Nodes are usually created from a Eyapp grammar using the %tree or %metatree directives. The "Parse::Eyapp::Node" constructor "new" offers an alternative way to create forests. This class method can be used to build multiple nodes on a row. It receives a string describing the tree and optionally a reference to a subroutine. Such subroutine (called the attribute handler) is in charge to initialize the attributes of the just created nodes. The attribute handler is called with the array of references to the nodes as they appear in the string from left to right. "Parse::Eyapp::Node->new" returns an array of pointers to the nodes created as they appear in the input string from left to right. In scalar context returns a pointer to the first of these trees. The following example (see file "examples/Node/28foldwithnewwithvars.pl") of a treeregexp transformation creates a new "NUM(TERMINAL)" node using "Parse::Eyapp::Node->new": my $p = Parse::Eyapp::Treeregexp->new( STRING => q{ { my %Op = (PLUS=>'+', MINUS => '-', TIMES=>'*', DIV => '/'); } constantfold: /TIMES|PLUS|MINUS|DIV/(NUM($x), NUM($y)) => { my $op = $Op{ref($_[0])}; my $res = Parse::Eyapp::Node->new( q{NUM(TERMINAL)}, sub { my ($NUM, $TERMINAL) = @_; $TERMINAL->{attr} = eval "$x->{attr} $op $y->{attr}"; $TERMINAL->{token} = 'NUM'; }, ); $_[0] = $res; } }, ); The call to "Parse::Eyapp::Node->new" creates a tree "NUM(TERMINAL)" and decorates the "TERMINAL" leaf with attributes "attr" and "token". The "constantfold" transformation substitutes all the binary operation trees whose children are numbers for a "NUM(TERMINAL)" tree holding as attribute the number resulting of operating the two numbers. The input string can describe more than one tree. Different trees are separated by white spaces. Consider the following example (in "examples/Node/builder.pl"): $ cat -n builder.pl 1 #!/usr/bin/perl -w 2 use strict; 3 use Parse::Eyapp::Node; 4 5 use Data::Dumper; 6 $Data::Dumper::Indent = 1; 7 $Data::Dumper::Purity = 1; 8 9 my $string = shift || 'ASSIGN(VAR(TERMINAL), TIMES(NUM(TERMINAL),NUM(TERMINAL))) '; 10 my @t = Parse::Eyapp::Node->new( 11 $string, 12 sub { my $i = 0; $_->{n} = $i++ for @_ } 13 ); 14 15 print "**************** "; 16 print Dumper(@t); When feed with input 'A(C,D) E(F)' the following forest is built: $ builder.pl 'A(C,D) E(F)' **************** $VAR1 = [ bless( { 'n' => 0, 'children' => [ bless( { 'n' => 1, 'children' => [] }, 'C' ), bless( { 'n' => 2, 'children' => [] }, 'D' ) ] }, 'A' ), {}, {}, bless( { 'n' => 3, 'children' => [ bless( { 'n' => 4, 'children' => [] }, 'F' ) ] }, 'E' ), {} ]; $VAR1->[1] = $VAR1->[0]{'children'}[0]; $VAR1->[2] = $VAR1->[0]{'children'}[1]; $VAR1->[4] = $VAR1->[3]{'children'}[0]; Thusm, the forest @t contains 5 subtrees "A(C,D), C, D, E(F)" and "F". Directed Acyclic Graphs with "Parse::Eyapp::Node->hnew" "Parse::Eyapp" provides the method "Parse::Eyapp::Node->hnew" to build Directed Acyclic Graphs (DAGs) instead of trees. They are built using hashed consing, i.e. memoizing the creation of nodes. The method "Parse::Eyapp::Node->hnew" works very much like "Parse::Eyapp::Node->new" but if one of the implied trees was previously built, "hnew" returns a reference to the existing one. See the following debugger session where several DAGs describing type expressions are built: DB<2> x $a = Parse::Eyapp::Node->hnew('F(X_3(A_3(A_5(INT)), CHAR, A_5(INT)),CHAR)') 0 F=HASH(0x85f6a20) 'children' => ARRAY(0x85e92e4) |- 0 X_3=HASH(0x83f55fc) | 'children' => ARRAY(0x83f5608) | |- 0 A_3=HASH(0x85a0488) | | 'children' => ARRAY(0x859fad4) | | 0 A_5=HASH(0x85e5d3c) | | 'children' => ARRAY(0x83f4120) | | 0 INT=HASH(0x83f5200) | | 'children' => ARRAY(0x852ccb4) | | empty array | |- 1 CHAR=HASH(0x8513564) | | 'children' => ARRAY(0x852cad4) | | empty array | `- 2 A_5=HASH(0x85e5d3c) | -> REUSED_ADDRESS `- 1 CHAR=HASH(0x8513564) -> REUSED_ADDRESS DB<3> x $a->str 0 'F(X_3(A_3(A_5(INT)),CHAR,A_5(INT)),CHAR)' The second occurrence of "A_5(INT)" is labelled "REUSED_ADDRESS". The same occurs with the second instance of "CHAR". "Parse::Eyapp::Node->hnew" can be more convenient than "new" in some compiler phases and tasks like detecting common subexpressions or during type checking. See file "Types.eyp" in "examples/typechecking/Simple-Types-XXX.tar.gz" for a more comprehensive example. Expanding Directed Acyclic Graphs with "Parse::Eyapp::Node->hexpand" Calls to "Parse::Eyapp::Node->hexpand" have the syntax $z = Parse::Eyapp::Node->hexpand('CLASS', @children, &handler) Creates a dag of type 'CLASS' with children @children in a way compatible with "hnew". The last optional argument can be a reference to a sub. Such sub will be called after the creation of the DAG with a reference to the root of the DAG as single argument. The following session with the debugger illustrates the use of "Parse::Eyapp::Node->hexpand". First we create a DAG using "hnew": pl@nereida:~/Lbook/code/Simple-Types/script$ perl -MParse::Eyapp::Node -wde 0 main::(-e:1): 0 DB<1> $x = Parse::Eyapp::Node->hnew('A(C(B),C(B))') DB<2> x $x 0 A=HASH(0x850c850) 'children' => ARRAY(0x850ca30) 0 C=HASH(0x850c928) 'children' => ARRAY(0x850c9e8) 0 B=HASH(0x850c9a0) 'children' => ARRAY(0x83268c8) empty array 1 C=HASH(0x850c928) -> REUSED_ADDRESS We obtain the "REUSED_ADDRESS" for the second child since the C(B) subtree appears twice. Now, suppose we want to expand the exsting tree/DAG C(B) to "A(C(B))". We can do that using "hexpand": DB<3> $y = Parse::Eyapp::Node->hexpand('A', $x->child(0)) DB<4> x $y 0 A=HASH(0x8592558) 'children' => ARRAY(0x832613c) 0 C=HASH(0x850c928) 'children' => ARRAY(0x850c9e8) 0 B=HASH(0x850c9a0) 'children' => ARRAY(0x83268c8) empty array We get new memory for C<$y>: C<HASH(0x8592558)> is anew address. Assume we want to expand the tree/DAG C<C(B)> to C<A(C(B),C(B))>. We can do it this way: DB<5> $z = Parse::Eyapp::Node->hexpand('A', $x->children) DB<6> x $z 0 A=HASH(0x850c850) 'children' => ARRAY(0x850ca30) 0 C=HASH(0x850c928) 'children' => ARRAY(0x850c9e8) 0 B=HASH(0x850c9a0) 'children' => ARRAY(0x83268c8) empty array 1 C=HASH(0x850c928) -> REUSED_ADDRESS Notice that the address c<0x850c850> for $z is the same than the address for $x. No new memory has been allocated for $z. The following command illustrates the use of "hexpand" with a handler: DB<7> $z = Parse::Eyapp::Node->hexpand('A', $x->children, sub { $_[0]->{t} = "X" }) DB<8> x $z 0 A=HASH(0x850c850) 'children' => ARRAY(0x850ca30) 0 C=HASH(0x850c928) 'children' => ARRAY(0x850c9e8) 0 B=HASH(0x850c9a0) 'children' => ARRAY(0x83268c8) empty array 1 C=HASH(0x850c928) -> REUSED_ADDRESS 't' => 'X' $node->type Returns (or sets) the type (class) of the node. It can be called as a subroutine when $node is not a "Parse::Eyapp::Node" like this: Parse::Eyapp::Node::type($scalar) This is the case when visiting "CODE" nodes. The following session with the debugger illustrates how it works: > perl -MParse::Eyapp::Node -de0 DB<1> @t = Parse::Eyapp::Node->new("A(B,C)") # Creates a tree DB<2> x map { $_->type } @t # Get the types of the three nodes 0 'A' 1 'B' 2 'C' DB<3> x Parse::Eyapp::Node::type(sub {}) 0 'CODE' DB<4> x Parse::Eyapp::Node::type("hola") 0 'Parse::Eyapp::Node::STRING' DB<5> x Parse::Eyapp::Node::type({ a=> 1}) 0 'HASH' DB<6> x Parse::Eyapp::Node::type([ a, 1 ]) 0 'ARRAY' As it is shown in the example it can be called as a subroutine with a (CODE/HASH/ARRAY) reference or an ordinary scalar. The words HASH, CODE, ARRAY and STRING are reserved for ordinary Perl references. Avoid naming a AST node with one of those words. To be used as a setter, be sure Parse::Eyapp::Driver is loaded: $ perl -MParse::Eyapp::Driver -MParse::Eyapp::Node -wde0 main::(-e:1): 0 DB<1> x $t = Parse::Eyapp::Node->new("A(B,C)") # Creates a tree 0 A=HASH(0x8557bdc) 'children' => ARRAY(0x8557c90) 0 B=HASH(0x8557cf0) 'children' => ARRAY(0x8325804) empty array 1 C=HASH(0x8557c6c) 'children' => ARRAY(0x8557d5c) empty array DB<2> x $t->type('FUN') # Change the type of $t to 'FUN' 0 'FUN' DB<3> x $t 0 FUN=HASH(0x8557bdc) 'children' => ARRAY(0x8557c90) 0 B=HASH(0x8557cf0) 'children' => ARRAY(0x8325804) empty array 1 C=HASH(0x8557c6c) 'children' => ARRAY(0x8557d5c) empty array DB<4> x $t->isa('Parse::Eyapp::Node') 0 1 $node->child Setter-getter to modify a specific child of a node. It is called like: $node->child($i) Returns the child with index $i. Returns "undef" if the child does not exists. It has two obligatory parameters: the node (since it is a method) and the index of the child. Sets the new value if called $node->child($i, $tree) The method will croak if the obligatory parameters are not provided. In the files "examples/Node/TSwithtreetransformations2.eyp" and "examples/node/usetswithtreetransformations2.pl") you can find a somewhat complicated example of call to "child" as a setter. It is inside a transformation that swaps the children of a "PLUS" node (remember that the tree is a concrete tree including code since it is a translation scheme built under the directive %metatree): my $transform = Parse::Eyapp::Treeregexp->new( STRING => q{ ........................................................ commutative_add: PLUS($x, ., $y, .) # 1st dot correspond to '+' 2nd dot to CODE => { my $t = $x; $_[0]->child(0, $y); $_[0]->child(2, $t)} ........................................................ } Child Access Through "%tree alias" Remember that when the "Eyapp" program runs under the "%tree alias" directive The dot and dollar notations can be used to generate named getter-setters to access the children: examples/Node$ cat -n alias_and_yyprefix.pl 1 #!/usr/local/bin/perl 2 use warnings; 3 use strict; 4 use Parse::Eyapp; 5 6 my $grammar = q{ 7 %prefix R::S:: 8 9 %right '=' 10 %left '-' '+' 11 %left '*' '/' 12 %left NEG 13 %tree bypass alias 14 15 %% 16 line: $exp { $_[1] } 17 ; 18 19 exp: 20 %name NUM 21 $NUM 22 | %name VAR 23 $VAR 24 | %name ASSIGN 25 $VAR '=' $exp 26 | %name PLUS 27 exp.left '+' exp.right 28 | %name MINUS 29 exp.left '-' exp.right 30 | %name TIMES 31 exp.left '*' exp.right 32 | %name DIV 33 exp.left '/' exp.right 34 | %no bypass UMINUS 35 '-' $exp %prec NEG 36 | '(' exp ')' { $_[2] } /* Let us simplify a bit the tree */ 37 ; 38 39 %% 40 ............................. 76 }; # end grammar 77 78 79 Parse::Eyapp->new_grammar( 80 input=>$grammar, 81 classname=>'Alias', 82 firstline =>7, 83 outputfile => 'main', 84 ); 85 my $parser = Alias->new(); 86 $parser->YYData->{INPUT} = "a = -(2*3+5-1) "; 87 my $t = $parser->Run; 88 $Parse::Eyapp::Node::INDENT=0; 89 print $t->VAR->str." "; # a 90 print "*************** "; 91 print $t->exp->exp->left->str." "; # 2*3+5 92 print "*************** "; 93 print $t->exp->exp->right->str." "; # 1 Here methods with names "left" and "right" will be created inside the class "R::S" (see the use of the %prefix directive in line 7) to access the corresponding children associated with the two instances of "exp" in the right hand side of the production rule. when executed, teh former program produces this output: examples/Node$ alias_and_yyprefix.pl R::S::TERMINAL *************** R::S::PLUS(R::S::TIMES(R::S::NUM,R::S::NUM),R::S::NUM) *************** R::S::NUM $node->children Returns the array of children of the node. When the tree is a translation scheme the CODE references are also included. See "examples/Node/TSPostfix3.eyp" for an example of use inside a Translation Scheme: examples/Node$ cat TSPostfix3.eyp ...................... # precedence declarations %metatree %defaultaction { if (@_==2) { # NUM and VAR $lhs->{t} = $_[1]->{attr}; return } if (@_==4) { # binary operations $lhs->{t} = "$_[1]->{t} $_[3]->{t} $_[2]->{attr}"; return } die "Fatal Error. Unexpected input. Numargs = ".scalar(@_)." ".Parse::Eyapp::Node->str(@_); } %% line: %name PROG exp <%name EXP + ';'> { @{$lhs->{t}} = map { $_->{t}} ($_[1]->children()); } ; exp: %name NUM NUM | %name VAR VAR | %name ASSIGN VAR '=' exp { $lhs->{t} = "$_[1]->{attr} $_[3]->{t} ="; } | %name PLUS exp '+' exp | %name MINUS exp '-' exp | %name TIMES exp '*' exp | %name DIV exp '/' exp | %name NEG '-' exp %prec NEG { $_[0]->{t} = "$_[2]->{t} NEG" } | '(' exp ')' %begin { $_[2] } ; %% ........................ The tree in a Translation Scheme contains the references to the "CODE" implementing the semantic actions. For example, the syntax tree built by the parser for the input "a=-b*3" in "TSPostfix3.eyp" is: PROG(EXP( ASSIGN( TERMINAL[a], TERMINAL[=], TIMES( NEG(TERMINAL[-], VAR(TERMINAL[b], CODE), CODE), TERMINAL[*], NUM(TERMINAL[3], CODE), CODE ) # TIMES, CODE ) # ASSIGN ) # EXP, CODE ) # PROG "$node->children" can also be used as a setter. $node->Children Returns the array of children of the node. When dealing with a translation scheme, the "$node->Children" method (Notice the case difference with "$node->children", first in uppercase) returns the non "CODE" children of the node. The following execution with the debugger of the example in "examples/Node/ts_with_ast.pl" illustrates the difference: examples/Node$ perl -wd ts_with_ast.pl main::(ts_with_ast.pl:6): my $translationscheme = q{ main::(ts_with_ast.pl:7): %{ The $translationscheme variable contains the code of a small calculator: %metatree %left '-' '+' %left '*' %left NEG %% line: %name EXP $exp { $lhs->{n} = $exp->{n} } ; exp: %name PLUS exp.left '+' exp.right { $lhs->{n} .= $left->{n} + $right->{n} } | %name TIMES exp.left '*' exp.right { $lhs->{n} = $left->{n} * $right->{n} } | %name NUM $NUM { $lhs->{n} = $NUM->{attr} } | '(' $exp ')' %begin { $exp } | exp.left '-' exp.right { $lhs->{n} = $left->{n} - $right->{n} } | '-' $exp %prec NEG { $lhs->{n} = -$exp->{n} } ; We run the program with input "2+(3)" and stop it at line 88, just after the augmented AST ("CODE" node included) has been built: DB<1> c 88 main::(ts_with_ast.pl:88): $t->translation_scheme; Now, let us see the difference between the methods "children" and "Children": DB<2> @a = $t->children; @b = $t->Children DB<3> print Parse::Eyapp::Node::str($_)." " for @a PLUS(NUM(TERMINAL,CODE),TERMINAL,NUM(TERMINAL,CODE),CODE) CODE DB<4> print $_->str." " for @b PLUS(NUM(TERMINAL,CODE),TERMINAL,NUM(TERMINAL,CODE),CODE) DB<5> $node->last_child Return the last child of the node. When dealing with translation schemes, the last can be a "CODE" node. $node->Last_child The "$node->Last_child" method returns the last non CODE child of the node. See an example: examples/Node$ cat -n trans_scheme_default_action.pl 1 #!/usr/bin/perl -w 2 use strict; 3 use Data::Dumper; 4 use Parse::Eyapp; 5 use IO::Interactive qw(is_interactive); 6 7 my $translationscheme = q{ 8 %{ 9 # head code is available at tree construction time 10 use Data::Dumper; 11 our %sym; # symbol table 12 %} 13 14 %prefix Calc:: 15 16 %defaultaction { 17 $lhs->{n} = eval " $left->{n} $_[2]->{attr} $right->{n} " 18 } 19 20 %metatree 21 22 %right '=' 23 %left '-' '+' 24 %left '*' '/' 25 26 %% 27 line: %name EXP 28 exp <+ ';'> /* Expressions separated by semicolons */ 29 { $lhs->{n} = $_[1]->Last_child->{n} } 30 ; 31 32 exp: 33 %name PLUS 34 exp.left '+' exp.right 35 | %name MINUS 36 exp.left '-' exp.right 37 | %name TIMES 38 exp.left '*' exp.right 39 | %name DIV 40 exp.left '/' exp.right 41 | %name NUM 42 $NUM 43 { $lhs->{n} = $NUM->{attr} } 44 | '(' $exp ')' %begin { $exp } 45 | %name VAR 46 $VAR 47 { $lhs->{n} = $sym{$VAR->{attr}}->{n} } 48 | %name ASSIGN 49 $VAR '=' $exp 50 { $lhs->{n} = $sym{$VAR->{attr}}->{n} = $exp->{n} } 51 52 ; 53 54 %% 55 # tail code is available at tree construction time ...................................................... 77 }; # end translation scheme 78 ...................................................... The node associated with $_[1] in 27 line: %name EXP 28 exp <+ ';'> /* Expressions separated by semicolons */ 29 { $lhs->{n} = $_[1]->Last_child->{n} } is associated with the whole expression exp <+ ';'> and is a "Calc::_PLUS_LIST" node. When feed with input "a=3;b=4" the children are the two "Calc::ASSIGN" subtrees associated with "a=3" and "b=4" and the "CODE" associated with the semantic action: { $lhs->{n} = $_[1]->Last_child->{n} } Using "Last_child" we are avoiding the last "CODE" child and setting the "n"(umeric) attribute of the "EXP" node to the one associated with "b=4" (i.e. 4). examples/Node$ trans_scheme_default_action.pl Write a sequence of arithmetic expressions: a=3;b=4 ***********Tree************* Calc::EXP( Calc::_PLUS_LIST( Calc::ASSIGN( Calc::TERMINAL, Calc::TERMINAL, Calc::NUM( Calc::TERMINAL, CODE ), CODE ) # Calc::ASSIGN, Calc::ASSIGN( Calc::TERMINAL, Calc::TERMINAL, Calc::NUM( Calc::TERMINAL, CODE ), CODE ) # Calc::ASSIGN ) # Calc::_PLUS_LIST, CODE ) # Calc::EXP ******Symbol table********** { 'a' => { 'n' => '3' }, 'b' => { 'n' => '4' } } ************Result********** 4 $node->descendant The " descendant" method returns the descendant of a node given its coordinates. The coordinates of a node $s relative to a tree $t to which it belongs is a string of numbers separated by dots like ".1.3.2" which denotes the child path from $t to $s, i.e. "$s == $t->child(1)->child(3)->child(2)". See a session with the debugger: DB<7> x $t->child(0)->child(0)->child(1)->child(0)->child(2)->child(1)->str 0 ' BLOCK[8:4:test]^{0}( CONTINUE[10,10] ) DB<8> x $t->descendant('.0.0.1.0.2.1')->str 0 ' BLOCK[8:4:test]^{0}( CONTINUE[10,10] $node->str The "str" method returns a string representation of the tree. The str method traverses the syntax tree dumping the type of the node being visited in a string. To be specific the value returned by the function referenced by $CLASS_HANDLER will be dumped. The default value fo such function is to return the type of the node. If the node being visited has a method "info" it will be executed and its result inserted between $DELIMITERs into the string. Thus, in the "SYNOPSIS" example, by adding the "info" method to the class "TERMINAL": sub TERMINAL::info { $_[0]{attr} } we achieve the insertion of attributes in the string being built by "str". The existence of some methods (like "footnote") and the values of some package variables influence the behavior of "str". Among the most important are: @PREFIXES = qw(Parse::Eyapp::Node::); # Prefixes to suppress $INDENT = 0; # -1 compact, no info, no footnotes # 0 = compact, 1 = indent, 2 = indent and include Types in closing parenthesis $STRSEP = ','; # Separator between nodes, by default a comma $DELIMITER = '['; # The string returned by C<info> will be enclosed $FOOTNOTE_HEADER = " --------------------------- "; $FOOTNOTE_SEP = ") "; $FOOTNOTE_LEFT = '^{'; # Left delimiter for a footnote number $FOOTNOTE_RIGHT = '}'; # Right delimiter for a footnote number $LINESEP = 4; # When indent=2 the enclosing parenthesis will be # commented if more than $LINESEP apart $CLASS_HANDLER = sub { type($_[0]) }; # What to print to identify the node Footnotes and attribute info will not be inserted when $INDENT is -1. A compact representation will be obtained. Such representation can be feed to "new" or "hnew" to obtain a copy of the tree. See the following session with the debugger: pl@nereida:~/LEyapp$ perl -MParse::Eyapp::Node -wde 0 main::(-e:1): 0 DB<1> $x = Parse::Eyapp::Node->new('A(B(C,D),D)', sub { $_->{order} = $i++ for @_; }) DB<2> *A::info = *B::info = *C::info = *D::info = sub { shift()->{order} } DB<3> p $x->str A[0](B[1](C[2],D[3]),D[4]) DB<4> $Parse::Eyapp::Node::INDENT=-1 DB<5> p $x->str A(B(C,D),D) DB<6> x Parse::Eyapp::Node->hnew($x->str) 0 A=HASH(0x8574704) 'children' => ARRAY(0x85745d8) 0 B=HASH(0x857468c) 'children' => ARRAY(0x8574608) 0 C=HASH(0x85745b4) 'children' => ARRAY(0x8509670) empty array 1 D=HASH(0x8574638) 'children' => ARRAY(0x857450c) empty array 1 D=HASH(0x8574638) -> REUSED_ADDRESS 1 B=HASH(0x857468c) -> REUSED_ADDRESS 2 C=HASH(0x85745b4) -> REUSED_ADDRESS 3 D=HASH(0x8574638) -> REUSED_ADDRESS 4 D=HASH(0x8574638) -> REUSED_ADDRESS The following list defines the $DELIMITERs you can choose for attribute representation: '[' => ']', '{' => '}', '(' => ')', '<' => '>' If the node being visited has a method "footnote", the string returned by the method will be concatenated at the end of the string as a footnote. The variables $FOOTNOTE_LEFT and $FOOTNOTE_RIGHT govern the displaying of footnote numbers. Follows an example of output using "footnotes". nereida:~/doc/casiano/PLBOOK/PLBOOK/code/Simple-Types/script> usetypes.pl prueba24.c PROGRAM^{0}(FUNCTION[f]^{1}(RETURNINT(TIMES(INUM(TERMINAL[2:2]),VAR(TERMINAL[a:2]))))) --------------------------- 0) Types: $VAR1 = { 'CHAR' => bless( { 'children' => [] }, 'CHAR' ), 'VOID' => bless( { 'children' => [] }, 'VOID' ), 'INT' => bless( { 'children' => [] }, 'INT' ), 'F(X_1(INT),INT)' => bless( { 'children' => [ bless( { 'children' => [ $VAR1->{'INT'} ] }, 'X_1' ), $VAR1->{'INT'} ] }, 'F' ) }; Symbol Table: $VAR1 = { 'f' => { 'type' => 'F(X_1(INT),INT)', 'line' => 1 } }; --------------------------- 1) $VAR1 = { 'a' => { 'type' => 'INT', 'param' => 1, 'line' => 1 } }; The first footnote was due to a call to "PROGRAM:footnote". The "footnote" method for the "PROGRAM" node was defined as: nereida:~/doc/casiano/PLBOOK/PLBOOK/code/Simple-Types/lib/Simple> sed -n -e '691,696p' Types.eyp | cat -n 1 sub PROGRAM::footnote { 2 return "Types: " 3 .Dumper($_[0]->{types}). 4 "Symbol Table: " 5 .Dumper($_[0]->{symboltable}) 6 } The second footnote was produced by the existence of a "FUNCTION::footnote" method: nereida:~/doc/casiano/PLBOOK/PLBOOK/code/Simple-Types/lib/Simple> sed -n -e '702,704p' Types.eyp | cat -n 1 sub FUNCTION::footnote { 2 return Dumper($_[0]->{symboltable}) 3 } The source program for the example was: 1 int f(int a) { 2 return 2*a; 3 } $node->equal A call "$tree1->equal($tree2)" compare the two trees $tree1 and $tree2. Two trees are considered equal if their root nodes belong to the same class, they have the same number of children and the children are (recursively) equal. In Addition to the two trees the programmer can specify pairs "attribute_key => equality_handler": $tree1->equal($tree2, attr1 => &handler1, attr2 => &handler2, ...) In such case the definition of equality is more restrictive: Two trees are considered equal if o Their root nodes belong to the same class, o They have the same number of children o For each of the specified attributes occur that for both nodes the existence and definition of the key is the same o Assuming the key exists and is defined for both nodes, the equality handlers return true for each of its attributes and o The respective children are (recursively) equal. An attribute handler receives as arguments the values of the attributes of the two nodes being compared and must return true if, and only if, these two attributes are considered equal. Follows an example: examples/Node$ cat -n equal.pl 1 #!/usr/bin/perl -w 2 use strict; 3 use Parse::Eyapp::Node; 4 5 my $string1 = shift || 'ASSIGN(VAR(TERMINAL))'; 6 my $string2 = shift || 'ASSIGN(VAR(TERMINAL))'; 7 my $t1 = Parse::Eyapp::Node->new($string1, sub { my $i = 0; $_->{n} = $i++ for @_ }); 8 my $t2 = Parse::Eyapp::Node->new($string2); 9 10 # Without attributes 11 if ($t1->equal($t2)) { 12 print " Not considering attributes: Equal "; 13 } 14 else { 15 print " Not considering attributes: Not Equal "; 16 } 17 18 # Equality with attributes 19 if ($t1->equal($t2, n => sub { return $_[0] == $_[1] })) { 20 print " Considering attributes: Equal "; 21 } 22 else { 23 print " Considering attributes: Not Equal "; 24 } When the former program is run without arguments produces the following output: examples/Node$ equal.pl Not considering attributes: Equal Considering attributes: Not Equal Using "equal" During Testing During the development of your compiler you add new stages to the existing ones. The consequence is that the AST is decorated with new attributes. Unfortunately, this implies that tests you wrote using "is_deeply" and comparisons against formerly correct abstract syntax trees are no longer valid. This is due to the fact that "is_deeply" requires both tree structures to be equivalent in every detail and that our new code produces a tree with new attributes. Instead of "is_deeply" use the "equal" method to check for partial equivalence between abstract syntax trees. You can follow these steps: o Dump the tree for the source inserting "Data::Dumper" statements o Carefully check that the tree is really correct o Decide which attributes will be used for comparison o Write the code for the expected value editing the output produced by "Data::Dumper" o Write the handlers for the attributes you decided. Write the comparison using "equal". Tests using this methodology will not fail even if later code decorating the AST with new attributes is introduced. See an example that checks an abstract syntax tree produced by the simple compiler (see "examples/typechecking/Simple-Types-XXX.tar.gz") for a really simple source: Simple-Types/script$ cat prueba27.c int f() { } The first thing is to obtain a description of the tree, that can be done executing the compiler under the control of the Perl debugger, stopping just after the tree has been built and dumping the tree with Data::Dumper: pl@nereida:~/Lbook/code/Simple-Types/script$ perl -wd usetypes.pl prueba27.c main::(usetypes.pl:5): my $filename = shift || die "Usage: $0 file.c "; DB<1> c 12 main::(usetypes.pl:12): Simple::Types::show_trees($t, $debug); DB<2> use Data::Dumper DB<3> $Data::Dumper::Purity = 1 DB<4> p Dumper($t) $VAR1 = bless( { .............................................. }, 'PROGRAM' ); ............................................................... Once we have the shape of a correct tree we can write our tests: examples/Node$ cat -n testequal.pl 1 #!/usr/bin/perl -w 2 use strict; 3 use Parse::Eyapp::Node; 4 use Data::Dumper; 5 use Data::Compare; 6 7 my $debugging = 0; 8 9 my $handler = sub { 10 print Dumper($_[0], $_[1]) if $debugging; 11 Compare($_[0], $_[1]) 12 }; 13 14 my $t1 = bless( { 15 'types' => { 16 'CHAR' => bless( { 'children' => [] }, 'CHAR' ), 17 'VOID' => bless( { 'children' => [] }, 'VOID' ), 18 'INT' => bless( { 'children' => [] }, 'INT' ), 19 'F(X_0(),INT)' => bless( { 20 'children' => [ 21 bless( { 'children' => [] }, 'X_0' ), 22 bless( { 'children' => [] }, 'INT' ) ] 23 }, 'F' ) 24 }, 25 'symboltable' => { 'f' => { 'type' => 'F(X_0(),INT)', 'line' => 1 } }, 26 'lines' => 2, 27 'children' => [ 28 bless( { 29 'symboltable' => {}, 30 'fatherblock' => {}, 31 'children' => [], 32 'depth' => 1, 33 'parameters' => [], 34 'function_name' => [ 'f', 1 ], 35 'symboltableLabel' => {}, 36 'line' => 1 37 }, 'FUNCTION' ) 38 ], 39 'depth' => 0, 40 'line' => 1 41 }, 'PROGRAM' ); 42 $t1->{'children'}[0]{'fatherblock'} = $t1; 43 44 # Tree similar to $t1 but without some attributes (line, depth, etc.) 45 my $t2 = bless( { 46 'types' => { 47 'CHAR' => bless( { 'children' => [] }, 'CHAR' ), 48 'VOID' => bless( { 'children' => [] }, 'VOID' ), 49 'INT' => bless( { 'children' => [] }, 'INT' ), 50 'F(X_0(),INT)' => bless( { 51 'children' => [ 52 bless( { 'children' => [] }, 'X_0' ), 53 bless( { 'children' => [] }, 'INT' ) ] 54 }, 'F' ) 55 }, 56 'symboltable' => { 'f' => { 'type' => 'F(X_0(),INT)', 'line' => 1 } }, 57 'children' => [ 58 bless( { 59 'symboltable' => {}, 60 'fatherblock' => {}, 61 'children' => [], 62 'parameters' => [], 63 'function_name' => [ 'f', 1 ], 64 }, 'FUNCTION' ) 65 ], 66 }, 'PROGRAM' ); 67 $t2->{'children'}[0]{'fatherblock'} = $t2; 68 69 # Tree similar to $t1 but without some attributes (line, depth, etc.) 70 # and without the symboltable and types attributes used in the comparison 71 my $t3 = bless( { 72 'types' => { 73 'CHAR' => bless( { 'children' => [] }, 'CHAR' ), 74 'VOID' => bless( { 'children' => [] }, 'VOID' ), 75 'INT' => bless( { 'children' => [] }, 'INT' ), 76 'F(X_0(),INT)' => bless( { 77 'children' => [ 78 bless( { 'children' => [] }, 'X_0' ), 79 bless( { 'children' => [] }, 'INT' ) ] 80 }, 'F' ) 81 }, 82 'children' => [ 83 bless( { 84 'symboltable' => {}, 85 'fatherblock' => {}, 86 'children' => [], 87 'parameters' => [], 88 'function_name' => [ 'f', 1 ], 89 }, 'FUNCTION' ) 90 ], 91 }, 'PROGRAM' ); 92 93 $t3->{'children'}[0]{'fatherblock'} = $t2; 94 95 # Without attributes 96 if (Parse::Eyapp::Node::equal($t1, $t2)) { 97 print " Not considering attributes: Equal "; 98 } 99 else { 100 print " Not considering attributes: Not Equal "; 101 } 102 103 # Equality with attributes 104 if (Parse::Eyapp::Node::equal( 105 $t1, $t2, 106 symboltable => $handler, 107 types => $handler, 108 ) 109 ) { 110 print " Considering attributes: Equal "; 111 } 112 else { 113 print " Considering attributes: Not Equal "; 114 } 115 116 # Equality with attributes 117 if (Parse::Eyapp::Node::equal( 118 $t1, $t3, 119 symboltable => $handler, 120 types => $handler, 121 ) 122 ) { 123 print " Considering attributes: Equal "; 124 } 125 else { 126 print " Considering attributes: Not Equal "; 127 } The code defining tree $t1 was obtained from an output using "Data::Dumper". The code for trees $t2 and $t3 was written using cut-and- paste from $t1. They have the same shape than $t1 but differ in their attributes. Tree $t2 shares with $t1 the attributes "symboltable" and "types" used in the comparison and so "equal" returns "true" when compared. Since $t3 differs from $t1 in the attributes "symboltable" and "types" the call to "equal" returns "false". $node->delete The "$node->delete($child)" method is used to delete the specified child of $node. The child to delete can be specified using the index or a reference. It returns the deleted child. Throws an exception if the object can't do "children" or has no "children". See also the delete method of treeregexes ("Parse::Eyapp:YATW" objects) to delete the node being visited. The following example moves out of a loop an assignment statement assuming is an invariant of the loop. To do it, it uses the "delete" and "insert_before" methods: nereida:~/src/perl/YappWithDefaultAction/examples> sed -ne '98,113p' moveinvariantoutofloopcomplexformula.pl my $p = Parse::Eyapp::Treeregexp->new( STRING => q{ moveinvariant: BLOCK( @prests, WHILE(VAR($b), BLOCK(@a, ASSIGN($x, NUM($e)), @c)), @possts ) => { my $assign = $ASSIGN; $BLOCK[1]->delete($ASSIGN); $BLOCK[0]->insert_before($WHILE, $assign); } }, FIRSTLINE => 99, ); $p->generate(); $moveinvariant->s($t); The example below deletes CODE nodes from the tree build for a translation scheme: my $transform = Parse::Eyapp::Treeregexp->new( STRING=>q{ delete_code: CODE => { Parse::Eyapp::Node::delete($CODE) } }, ) Observe how delete is called as a subroutine. $node->unshift($newchild) Inserts $newchild at the beginning of the list of children of $node. See also the unshift method for "Parse::Eyapp:YATW" treeregexp transformation objects $node->push($newchild) Inserts $newchild at the end of the list of children of $node. $node->insert_before($position, $new_child) Inserts $newchild before $position in the list of children of $node. Variable $position can be an index or a reference. The method throws an exception if $position is an index and is not in range. Also if $node has no children. The method throws a warning if $position is a reference and does not define an actual child. In such case $new_child is not inserted. See also the insert_before method for "Parse::Eyapp:YATW" treeregexp transformation objects $node->insert_after($position, $new_child) Inserts $newchild after $position in the list of children of $node. Variable $position can be an index or a reference. The method throws an exception if $position is an index and is not in the range of "$node-"children>. The method throws a warning if $position is a reference and does not exists in the list of children. In such case $new_child is not inserted. $node->translation_scheme Traverses $node. Each time a CODE node is visited the subroutine referenced is called with arguments the node and its children. Usually the code will decorate the nodes with new attributes or will update existing ones. Obviously this method does nothing for an ordinary AST. It is used after compiling an Eyapp program that makes use of the %metatree directive. (See "examples/Node/TSPostfix3.eyp" for an example). $node->bud(@transformations) Bottom-up decorator. The tree is traversed bottom-up. The set of transformations in @transformations is applied to each node in the tree referenced by $node in the order supplied by the user. As soon as one succeeds no more transformations are applied. For an example see the files "lib/Simple/Types.eyp" and "lib/Simple/Trans.trg" in "examples/typechecking/Simple-Types-XXX.tar.gz" shows an extract of the type-checking phase of a toy-example compiler: examples/typechecking/Simple-Types-0.4/lib/Simple$ sed -ne '600,613p' Types.eyp my @typecheck = ( # Check typing transformations for our $inum, # - Numerical constantss our $charconstant, # - Character constants our $bin, # - Binary Operations our $arrays, # - Arrays our $assign, # - Assignments our $control, # - Flow control sentences our $functioncall, # - Function calls our $statements, # - Those nodes with void type # (STATEMENTS, PROGRAM, etc.) our $returntype, # - Return ); $t->bud(@typecheck); You can find another example of use of "bud" in the file "examples/ParsingStringsAndTrees/infix2pir.pl" Parse::Eyapp:YATW Methods "Parse::Eyapp:YATW" objects represent tree transformations. They carry the information of what nodes match and how to modify them. Parse::Eyapp::YATW->new Builds a treeregexp transformation object. Though usually you build a transformation by means of Treeregexp programs you can directly invoke the method to build a tree transformation. A transformation object can be built from a function that conforms to the YATW tree transformation call protocol (see the section "The YATW Tree Transformation Call Protocol"). Follows an example (file "examples/12ts_simplify_with_s.pl"): nereida:~/src/perl/YappWithDefaultAction/examples> sed -ne '68,$p' 12ts_simplify_with_s.pl | cat -n 1 sub is_code { 2 my $self = shift; # tree 3 4 # After the shift $_[0] is the father, $_[1] the index 5 if ((ref($self) eq 'CODE')) { 6 splice(@{$_[0]->{children}}, $_[1], 1); 7 return 1; 8 } 9 return 0; 10 } 11 12 Parse::Eyapp->new_grammar( 13 input=>$translationscheme, 14 classname=>'Calc', 15 firstline =>7, 16 ); 17 my $parser = Calc->new(); # Create the parser 18 19 $parser->YYData->{INPUT} = "2*-3 "; print "2*-3 "; # Set the input 20 my $t = $parser->Run; # Parse it 21 print $t->str." "; 22 my $p = Parse::Eyapp::YATW->new(PATTERN => &is_code); 23 $p->s($t); 24 { no warnings; # make attr info available only for this display 25 local *TERMINAL::info = sub { $_[0]{attr} }; 26 print $t->str." "; 27 } After the "Parse::Eyapp::YATW" object $p is built at line 22 the call to method "$p->s($t)" applies the transformation "is_code" using a bottom-up traversing of the tree $t. The achieved effect is the elimination of "CODE" references in the translation scheme tree. When executed the former code produces: nereida:~/src/perl/YappWithDefaultAction/examples> 12ts_simplify_with_s.pl 2*-3 EXP(TIMES(NUM(TERMINAL,CODE),TERMINAL,UMINUS(TERMINAL,NUM(TERMINAL,CODE),CODE),CODE),CODE) EXP(TIMES(NUM(TERMINAL[2]),TERMINAL[*],UMINUS(TERMINAL[-],NUM(TERMINAL[3])))) The file "foldrule6.pl" in the "examples/" distribution directory gives you another example: nereida:~/src/perl/YappWithDefaultAction/examples> cat -n foldrule6.pl 1 #!/usr/bin/perl -w 2 use strict; 3 use Rule6; 4 use Parse::Eyapp::YATW; 5 6 my %BinaryOperation = (PLUS=>'+', MINUS => '-', TIMES=>'*', DIV => '/'); 7 8 sub set_terminfo { 9 no warnings; 10 *TERMINAL::info = sub { $_[0]{attr} }; 11 } 12 sub is_foldable { 13 my ($op, $left, $right); 14 return 0 unless defined($op = $BinaryOperation{ref($_[0])}); 15 return 0 unless ($left = $_[0]->child(0), $left->isa('NUM')); 16 return 0 unless ($right = $_[0]->child(1), $right->isa('NUM')); 17 18 my $leftnum = $left->child(0)->{attr}; 19 my $rightnum = $right->child(0)->{attr}; 20 $left->child(0)->{attr} = eval "$leftnum $op $rightnum"; 21 $_[0] = $left; 22 } 23 24 my $parser = new Rule6(); 25 $parser->YYData->{INPUT} = "2*3"; 26 my $t = $parser->Run; 27 &set_terminfo; 28 print " ***** Before ****** "; 29 print $t->str; 30 my $p = Parse::Eyapp::YATW->new(PATTERN => &is_foldable); 31 $p->s($t); 32 print " ***** After ****** "; 33 print $t->str." "; when executed produces: nereida:~/src/perl/YappWithDefaultAction/examples> foldrule6.pl ***** Before ****** TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3])) ***** After ****** NUM(TERMINAL[6]) The YATW Tree Transformation Call Protocol For a subroutine "pattern_sub" to work as a YATW tree transformation - as subroutines "is_foldable" and "is_code" above - has to conform to the following call description: pattern_sub( $_[0], # Node being visited $_[1], # Father of this node $index, # Index of this node in @Father->children $self, # The YATW pattern object ); The "pattern_sub" must return TRUE if matched and FALSE otherwise. The protocol may change in the near future. Avoid using other information than the fact that the first argument is the node being visited. Parse::Eyapp::YATW->buildpatterns Works as "Parse::Eyapp->new" but receives an array of subs conforming to the YATW Tree Transformation Call Protocol. our @all = Parse::Eyapp::YATW->buildpatt(&delete_code, &delete_tokens); $yatw->delete The root of the tree that is currently matched by the YATW transformation $yatw will be deleted from the tree as soon as is safe. That usually means when the processing of their siblings is finished. The following example (taken from file "examples/13ts_simplify_with_delete.pl" in the Parse::Eyapp distribution) illustrates how to eliminate CODE and syntactic terminals from the syntax tree: pl@nereida:~/src/perl/YappWithDefaultAction/examples$ sed -ne '62,$p' 13ts_simplify_with_delete.pl | cat -n 1 sub not_useful { 2 my $self = shift; # node 3 my $pat = $_[2]; # get the YATW object 4 5 (ref($self) eq 'CODE') or ((ref($self) eq 'TERMINAL') and ($self->{token} eq $self->{attr})) 6 or do { return 0 }; 7 $pat->delete(); 8 return 1; 9 } 10 11 Parse::Eyapp->new_grammar( 12 input=>$translationscheme, 13 classname=>'Calc', 14 firstline =>7, 15 ); 16 my $parser = Calc->new(); # Create the parser 17 18 $parser->YYData->{INPUT} = "2*3 "; print $parser->YYData->{INPUT}; 19 my $t = $parser->Run; # Parse it 20 print $t->str." "; # Show the tree 21 my $p = Parse::Eyapp::YATW->new(PATTERN => &not_useful); 22 $p->s($t); # Delete nodes 23 print $t->str." "; # Show the tree when executed we get the following output: pl@nereida:~/src/perl/YappWithDefaultAction/examples$ 13ts_simplify_with_delete.pl 2*3 EXP(TIMES(NUM(TERMINAL[2],CODE),TERMINAL[*],NUM(TERMINAL[3],CODE),CODE)) EXP(TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3]))) $yatw->unshift The call "$yatw->unshift($b)" safely unshifts (inserts at the beginning) the node $b in the list of its siblings of the node that matched (i.e in the list of siblings of $_[0]). The following example shows a YATW transformation "insert_child" that illustrates the use of "unshift" (file "examples/26delete_with_trreereg.pl"): pl@nereida:~/src/perl/YappWithDefaultAction/examples$ sed -ne '70,$p' 26delete_with_trreereg.pl | cat -n 1 my $transform = Parse::Eyapp::Treeregexp->new( STRING => q{ 2 3 delete_code : CODE => { $delete_code->delete() } 4 5 { 6 sub not_semantic { 7 my $self = shift; 8 return 1 if ((ref($self) eq 'TERMINAL') and ($self->{token} eq $self->{attr})); 9 return 0; 10 } 11 } 12 13 delete_tokens : TERMINAL and { not_semantic($TERMINAL) } => { 14 $delete_tokens->delete(); 15 } 16 17 insert_child : TIMES(NUM(TERMINAL), NUM(TERMINAL)) => { 18 my $b = Parse::Eyapp::Node->new( 'UMINUS(TERMINAL)', 19 sub { $_[1]->{attr} = '4.5' }); # The new node will be a sibling of TIMES 20 21 $insert_child->unshift($b); 22 } 23 }, 24 )->generate(); 25 26 Parse::Eyapp->new_grammar( 27 input=>$translationscheme, 28 classname=>'Calc', 29 firstline =>7, 30 ); 31 my $parser = Calc->new(); # Create the parser 32 33 $parser->YYData->{INPUT} = "2*3 "; print $parser->YYData->{INPUT}; # Set the input 34 my $t = $parser->Run; # Parse it 35 print $t->str." "; # Show the tree 36 # Get the AST 37 our ($delete_tokens, $delete_code); 38 $t->s($delete_tokens, $delete_code); 39 print $t->str." "; # Show the tree 40 our $insert_child; 41 $insert_child->s($t); 42 print $t->str." "; # Show the tree When is executed the program produces the following output: pl@nereida:~/src/perl/YappWithDefaultAction/examples$ 26delete_with_trreereg.pl 2*3 EXP(TIMES(NUM(TERMINAL[2],CODE),TERMINAL[*],NUM(TERMINAL[3],CODE),CODE)) EXP(TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3]))) EXP(UMINUS(TERMINAL[4.5]),TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3]))) Don't try to take advantage that the transformation sub receives in $_[1] a reference to the father (see the section "The YATW Tree Transformation Call Protocol") and do something like: unshift $_[1]->{children}, $b it is unsafe. $yatw->insert_before A call to "$yatw->insert_before($node)" safely inserts $node in the list of siblings of $_[0] just before $_[0] (i.e. the node that matched with $yatw). The following example (see file "examples/YATW/moveinvariantoutofloopcomplexformula.pl") illustrates its use: my $p = Parse::Eyapp::Treeregexp->new( STRING => q{ moveinvariant: WHILE(VAR($b), BLOCK(@a, ASSIGN($x, $e), @c)) and { is_invariant($ASSIGN, $WHILE) } => { my $assign = $ASSIGN; $BLOCK->delete($ASSIGN); $moveinvariant->insert_before($assign); } }, ); Here the "ASSIGN($x, $e)" subtree - if is loop invariant - will be moved to the list of siblings of $WHILE just before the $WHILE. Thus a program like "a =1000; c = 1; while (a) { c = c*a; b = 5; a = a-1 } " is transformed in s.t. like: "a =1000; c = 1; b = 5; while (a) { c = c*a; a = a-1 } " TREE MATCHING AND TREE SUBSTITUTION
See the documentation in Parse::Eyapp::treematchingtut SEE ALSO
o The project home is at http://code.google.com/p/parse-eyapp/ <http://code.google.com/p/parse-eyapp/>. Use a subversion client to anonymously check out the latest project source code: svn checkout http://parse-eyapp.googlecode.com/svn/trunk/ parse-eyapp-read-only o The tutorial Parsing Strings and Trees with "Parse::Eyapp" (An Introduction to Compiler Construction in seven pages) in <http://nereida.deioc.ull.es/~pl/eyapsimple/> o Parse::Eyapp, Parse::Eyapp::eyapplanguageref, Parse::Eyapp::debuggingtut, Parse::Eyapp::defaultactionsintro, Parse::Eyapp::translationschemestut, Parse::Eyapp::Driver, Parse::Eyapp::Node, Parse::Eyapp::YATW, Parse::Eyapp::Treeregexp, Parse::Eyapp::Scope, Parse::Eyapp::Base, Parse::Eyapp::datagenerationtut o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/languageintro.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/debuggingtut.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/eyapplanguageref.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Treeregexp.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Node.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/YATW.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Eyapp.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Base.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/translationschemestut.pdf> o The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/treematchingtut.pdf> o perldoc eyapp, o perldoc treereg, o perldoc vgg, o The Syntax Highlight file for vim at <http://www.vim.org/scripts/script.php?script_id=2453> and <http://nereida.deioc.ull.es/~vim/> o Analisis Lexico y Sintactico, (Notes for a course in compiler construction) by Casiano Rodriguez-Leon. Available at <http://nereida.deioc.ull.es/~pl/perlexamples/> Is the more complete and reliable source for Parse::Eyapp. However is in Spanish. o Parse::Yapp, o Man pages of yacc(1) and bison(1), <http://www.delorie.com/gnu/docs/bison/bison.html> o Language::AttributeGrammar o Parse::RecDescent. o HOP::Parser o HOP::Lexer o ocamlyacc tutorial at http://plus.kaist.ac.kr/~shoh/ocaml/ocamllex-ocamlyacc/ocamlyacc-tutorial/ocamlyacc-tutorial.html <http://plus.kaist.ac.kr/~shoh/ocaml/ocamllex-ocamlyacc/ocamlyacc-tutorial/ocamlyacc-tutorial.html> REFERENCES
o The classic Dragon's book Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman (Addison- Wesley 1986) o CS2121: The Implementation and Power of Programming Languages (See <http://www.cs.man.ac.uk/~pjj>, <http://www.cs.man.ac.uk/~pjj/complang/g2lr.html> and <http://www.cs.man.ac.uk/~pjj/cs2121/ho/ho.html>) by Pete Jinks CONTRIBUTORS
o Hal Finkel <http://www.halssoftware.com/> o G. Williams <http://kasei.us/> o Thomas L. Shinnick <http://search.cpan.org/~tshinnic/> o Frank Leray AUTHOR
Casiano Rodriguez-Leon (casiano@ull.es) ACKNOWLEDGMENTS
This work has been supported by CEE (FEDER) and the Spanish Ministry of Educacion y Ciencia through Plan Nacional I+D+I number TIN2005-08818-C04-04 (ULL::OPLINK project <http://www.oplink.ull.es/>). Support from Gobierno de Canarias was through GC02210601 (Grupos Consolidados). The University of La Laguna has also supported my work in many ways and for many years. A large percentage of code is verbatim taken from Parse::Yapp 1.05. The author of Parse::Yapp is Francois Desarmenien. I wish to thank Francois Desarmenien for his Parse::Yapp module, to my students at La Laguna and to the Perl Community. Thanks to the people who have contributed to improve the module (see "CONTRIBUTORS" in Parse::Eyapp). Thanks to Larry Wall for giving us Perl. Special thanks to Juana. LICENCE AND COPYRIGHT
Copyright (c) 2006-2008 Casiano Rodriguez-Leon (casiano@ull.es). All rights reserved. Parse::Yapp copyright is of Francois Desarmenien, all rights reserved. 1998-2001 These modules are free software; you can redistribute it and/or modify it under the same terms as Perl itself. See perlartistic. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. perl v5.16.2 2012-03-23 Parse::Eyapp::Node(3)
Man Page