Linux and UNIX Man Pages

Test Your Knowledge in Computers #233
Difficulty: Easy
The goal of ARPANET, the precursor to the global Internet, was to exploit new computer technologies to meet the needs of military command and control against nuclear threats, achieve survivable control of US nuclear forces, and improve military tactical and management decision making.
True or False?
Linux & Unix Commands - Search Man Pages

mlib_matrixscale_s16c_s16c_sat(3mlib) [opensolaris man page]

mlib_MatrixScale_U8_U8_Mod(3MLIB)			    mediaLib Library Functions				 mlib_MatrixScale_U8_U8_Mod(3MLIB)

NAME
mlib_MatrixScale_U8_U8_Mod, mlib_MatrixScale_U8_U8_Sat, mlib_MatrixScale_U8C_U8C_Mod, mlib_MatrixScale_U8C_U8C_Sat, mlib_MatrixS- cale_S8_S8_Mod, mlib_MatrixScale_S8_S8_Sat, mlib_MatrixScale_S8C_S8C_Mod, mlib_MatrixScale_S8C_S8C_Sat, mlib_MatrixScale_S16_U8_Mod, mlib_MatrixScale_S16_U8_Sat, mlib_MatrixScale_S16_S8_Mod, mlib_MatrixScale_S16_S8_Sat, mlib_MatrixScale_S16_S16_Mod, mlib_MatrixS- cale_S16_S16_Sat, mlib_MatrixScale_S16C_U8C_Mod, mlib_MatrixScale_S16C_U8C_Sat, mlib_MatrixScale_S16C_S8C_Mod, mlib_MatrixS- cale_S16C_S8C_Sat, mlib_MatrixScale_S16C_S16C_Mod, mlib_MatrixScale_S16C_S16C_Sat, mlib_MatrixScale_S32_S16_Mod, mlib_MatrixS- cale_S32_S16_Sat, mlib_MatrixScale_S32_S32_Mod, mlib_MatrixScale_S32_S32_Sat, mlib_MatrixScale_S32C_S16C_Mod, mlib_MatrixS- cale_S32C_S16C_Sat, mlib_MatrixScale_S32C_S32C_Mod, mlib_MatrixScale_S32C_S32C_Sat - matrix linear scaling SYNOPSIS
cc [ flag... ] file... -lmlib [ library... ] #include <mlib.h> mlib_status mlib_MatrixScale_U8_U8_Mod(mlib_u8 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_U8_U8_Sat(mlib_u8 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_U8C_U8C_Mod(mlib_u8 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_U8C_U8C_Sat(mlib_u8 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S8_S8_Mod(mlib_s8 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S8_S8_Sat(mlib_s8 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S8C_S8C_Mod(mlib_s8 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S8C_S8C_Sat(mlib_s8 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16_U8_Mod(mlib_s16 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16_U8_Sat(mlib_s16 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16_S8_Mod(mlib_s16 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16_S8_Sat(mlib_s16 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16_S16_Mod(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16_S16_Sat(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16C_U8C_Mod(mlib_s16 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16C_U8C_Sat(mlib_s16 *z, const mlib_u8 *x, const mlib_u8 *a, const mlib_u8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16C_S8C_Mod(mlib_s16 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16C_S8C_Sat(mlib_s16 *z, const mlib_s8 *x, const mlib_s8 *a, const mlib_s8 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16C_S16C_Mod(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S16C_S16C_Sat(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32_S16_Mod(mlib_s32 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32_S16_Sat(mlib_s32 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32_S32_Mod(mlib_s32 *z, const mlib_s32 *x, const mlib_s32 *a, const mlib_s32 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32_S32_Sat(mlib_s32 *z, const mlib_s32 *x, const mlib_s32 *a, const mlib_s32 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32C_S16C_Mod(mlib_s32 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32C_S16C_Sat(mlib_s32 *z, const mlib_s16 *x, const mlib_s16 *a, const mlib_s16 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32C_S32C_Mod(mlib_s32 *z, const mlib_s32 *x, const mlib_s32 *a, const mlib_s32 *b, mlib_s32 m, mlib_s32 n); mlib_status mlib_MatrixScale_S32C_S32C_Sat(mlib_s32 *z, const mlib_s32 *x, const mlib_s32 *a, const mlib_s32 *b, mlib_s32 m, mlib_s32 n); DESCRIPTION
Each of these functions multiplies a matrix by a scalar and then adds an offset. For real data, the following equation is used: z[i] = a[0]*x[i] + b[0] where i = 0, 1, ..., (m*n - 1). For complex data, the following equation is used: z[2*i] = a[0]*x[2*i] - a[1]*x[2*i + 1] + b[0] z[2*i + 1] = a[1]*x[2*i] + a[0]*x[2*i + 1] + b[1] where i = 0, 1, ..., (m*n - 1). PARAMETERS
Each of the functions takes the following arguments: z Pointer to the destination matrix. x Pointer to the source matrix. a Pointer to the source scaling factor. When the function is used with complex data types, a[0] contains the scalar for the real part, and a[1] contains the scalar for the imaginary part. b Pointer to the source offset. When the function is used with complex data types, b[0] contains the offset for the real part, and b[1] contains the offset for the imaginary part. m Number of rows in each matrix. n Number of columns in each matrix. RETURN VALUES
Each of the functions returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE. ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Interface Stability |Committed | +-----------------------------+-----------------------------+ |MT-Level |MT-Safe | +-----------------------------+-----------------------------+ SEE ALSO
mlib_MatrixScale_U8_Mod(3MLIB), attributes(5) SunOS 5.11 2 Mar 2007 mlib_MatrixScale_U8_U8_Mod(3MLIB)

Featured Tech Videos