mlib_matrixmulshift_s16_s16_sat(3mlib) [opensolaris man page]
mlib_MatrixMulShift_S16_S16_Mod(3MLIB) mediaLib Library Functions mlib_MatrixMulShift_S16_S16_Mod(3MLIB) NAME
mlib_MatrixMulShift_S16_S16_Mod, mlib_MatrixMulShift_S16_S16_Sat, mlib_MatrixMulShift_S16C_S16C_Mod, mlib_MatrixMulShift_S16C_S16C_Sat - matrix multiplication plus shifting SYNOPSIS
cc [ flag... ] file... -lmlib [ library... ] #include <mlib.h> mlib_status mlib_MatrixMulShift_S16_S16_Mod(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); mlib_status mlib_MatrixMulShift_S16_S16_Sat(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); mlib_status mlib_MatrixMulShift_S16C_S16C_Mod(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); mlib_status mlib_MatrixMulShift_S16C_S16C_Sat(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); DESCRIPTION
Each of these functions performs a multiplication of two matrices and shifts the result. For real data, the following equation is used: l-1 z[i*n + j] = {SUM (x[i*l + k] * y[k*n + j])} * 2**(-shift) k=0 where i = 0, 1, ..., (m - 1); j = 0, 1, ..., (n - 1). For complex data, the following equation is used: l-1 z[2*(i*n + j)] = {SUM (xR*yR - xI*yI)} * 2**(-shift) k=0 l-1 z[2*(i*n + j) + 1] = {SUM (xR*yI + xI*yR)} * 2**(-shift) k=0 where xR = x[2*(i*l + k)] xI = x[2*(i*l + k) + 1] yR = y[2*(k*n + j)] yI = y[2*(k*n + j) + 1] i = 0, 1, ..., (m - 1) j = 0, 1, ..., (n - 1) PARAMETERS
Each of the functions takes the following arguments: z Pointer to the first element of the result matrix, in row major order. x Pointer to the first element of the first matrix, in row major order. y Pointer to the first element of the second matrix, in row major order. m Number of rows in the first matrix. m > 0. l Number of columns in the first matrix, and the number of rows in the second matrix. l > 0. n Number of columns in the second matrix. n > 0. shift Right shifting factor. 1 <= shift <= 16. RETURN VALUES
Each of the functions returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE. ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Interface Stability |Committed | +-----------------------------+-----------------------------+ |MT-Level |MT-Safe | +-----------------------------+-----------------------------+ SEE ALSO
mlib_MatrixMul_U8_U8_Mod(3MLIB), attributes(5) SunOS 5.11 2 Mar 2007 mlib_MatrixMulShift_S16_S16_Mod(3MLIB)
Check Out this Related Man Page
mlib_MatrixMulShift_S16_S16_Mod(3MLIB) mediaLib Library Functions mlib_MatrixMulShift_S16_S16_Mod(3MLIB) NAME
mlib_MatrixMulShift_S16_S16_Mod, mlib_MatrixMulShift_S16_S16_Sat, mlib_MatrixMulShift_S16C_S16C_Mod, mlib_MatrixMulShift_S16C_S16C_Sat - matrix multiplication plus shifting SYNOPSIS
cc [ flag... ] file... -lmlib [ library... ] #include <mlib.h> mlib_status mlib_MatrixMulShift_S16_S16_Mod(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); mlib_status mlib_MatrixMulShift_S16_S16_Sat(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); mlib_status mlib_MatrixMulShift_S16C_S16C_Mod(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); mlib_status mlib_MatrixMulShift_S16C_S16C_Sat(mlib_s16 *z, const mlib_s16 *x, const mlib_s16 *y, mlib_s32 m, mlib_s32 l, mlib_s32 n, mlib_s32 shift); DESCRIPTION
Each of these functions performs a multiplication of two matrices and shifts the result. For real data, the following equation is used: l-1 z[i*n + j] = {SUM (x[i*l + k] * y[k*n + j])} * 2**(-shift) k=0 where i = 0, 1, ..., (m - 1); j = 0, 1, ..., (n - 1). For complex data, the following equation is used: l-1 z[2*(i*n + j)] = {SUM (xR*yR - xI*yI)} * 2**(-shift) k=0 l-1 z[2*(i*n + j) + 1] = {SUM (xR*yI + xI*yR)} * 2**(-shift) k=0 where xR = x[2*(i*l + k)] xI = x[2*(i*l + k) + 1] yR = y[2*(k*n + j)] yI = y[2*(k*n + j) + 1] i = 0, 1, ..., (m - 1) j = 0, 1, ..., (n - 1) PARAMETERS
Each of the functions takes the following arguments: z Pointer to the first element of the result matrix, in row major order. x Pointer to the first element of the first matrix, in row major order. y Pointer to the first element of the second matrix, in row major order. m Number of rows in the first matrix. m > 0. l Number of columns in the first matrix, and the number of rows in the second matrix. l > 0. n Number of columns in the second matrix. n > 0. shift Right shifting factor. 1 <= shift <= 16. RETURN VALUES
Each of the functions returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE. ATTRIBUTES
See attributes(5) for descriptions of the following attributes: +-----------------------------+-----------------------------+ | ATTRIBUTE TYPE | ATTRIBUTE VALUE | +-----------------------------+-----------------------------+ |Interface Stability |Committed | +-----------------------------+-----------------------------+ |MT-Level |MT-Safe | +-----------------------------+-----------------------------+ SEE ALSO
mlib_MatrixMul_U8_U8_Mod(3MLIB), attributes(5) SunOS 5.11 2 Mar 2007 mlib_MatrixMulShift_S16_S16_Mod(3MLIB)