# map(6) [opendarwin man page]

```MAP(6)								       Games								    MAP(6)

NAME
map - map colouring game

SYNOPSIS
map [--generate n] [--print wxh [--with-solutions] [--scale n] [--colour]] [game-parameters|game-ID|random-seed]

map --version

DESCRIPTION
You  are  given a map consisting of a number of regions. Your task is to colour each region with one of four colours, in such a way that no
two regions sharing a boundary have the same colour. You are provided with some regions already coloured, sufficient to make the  remainder
of the solution unique.

Only regions which share a length of border are required to be different colours. Two regions which meet at only one point (i.e. are diago-
nally separated) may be the same colour.

I believe this puzzle is original; I've never seen an implementation of it anywhere else. The concept of a four-colouring puzzle  was  sug-
gested  by  Owen Dunn; credit must also go to Nikoli and to Verity Allan for inspiring the train of thought that led to me realising Owen's
suggestion was a viable puzzle. Thanks also to Gareth Taylor for many detailed suggestions.

Map controls
To colour a region, click the left mouse button on an existing region of the desired colour and drag that colour into the new region.

(The program will always ensure the starting puzzle has at least one region of each colour, so that this is always possible!)

If you need to clear a region, you can drag from an empty region, or from the puzzle boundary if there are no empty regions left.

Dragging a colour using the right mouse button will stipple the region in that colour, which you can use as a note  to  yourself  that  you
think  the region might be that colour. A region can contain stipples in multiple colours at once. (This is often useful at the harder dif-
ficulty levels.)

You can also use the cursor keys to move around the map: the colour of the cursor indicates the position  of  the  colour  you  would  drag
(which is not obvious if you're on a region's boundary, since it depends on the direction from which you approached the boundary). Pressing
the return key starts a drag of that colour, as above, which you control with the cursor keys; pressing the return key again  finishes  the
drag.  The  space  bar  can  be used similarly to create a stippled region. Double-pressing the return key (without moving the cursor) will
clear the region, as a drag from an empty region does: this is useful with the cursor mode if you have filled the entire map in but need to
correct the layout.

If  you	press  L  during play, the game will toggle display of a number in each region of the map. This is useful if you want to discuss a
particular puzzle instance with a friend - having an unambiguous name for each region is much easier than trying to refer to  them  all	by
names such as 'the one down and right of the brown one on the top border'.

(All the actions described below are also available.)

Map parameters
These parameters are available from the 'Custom...' option on the 'Type' menu.

Width, Height
Size of grid in squares.

Regions
Number of regions in the generated map.

Difficulty
In  'Easy'  mode, there should always be at least one region whose colour can be determined trivially. In 'Normal' and 'Hard' modes,
you will have to use increasingly complex logic to deduce the colour of some regions. However, it will always  be  possible  without
having to guess or backtrack.

In 'Unreasonable' mode, the program will feel free to generate puzzles which are as hard as it can possibly make them: the only con-
straint is that they should still have a unique solution. Solving Unreasonable puzzles may require guessing and backtracking.

Common actions
These actions are all available from the 'Game' menu and via keyboard shortcuts, in addition to any game-specific actions.

(On Mac OS X, to conform with local user interface standards, these actions are situated on the 'File' and 'Edit' menus instead.)

New game ('N', Ctrl+'N')
Starts a new game, with a random initial state.

Restart game
Resets the current game to its initial state. (This can be undone.)

Save   Saves the current state of your game to a file on disk.

The Load and Save operations preserve your entire game history (so you can save, reload, and still Undo and Redo things you had done
before saving).

Print  Where supported (currently only on Windows), brings up a dialog allowing you to print an arbitrary number of puzzles randomly gener-
ated from the current parameters, optionally including the current puzzle. (Only for puzzles which make sense to print, of course  -
it's hard to think of a sensible printable representation of Fifteen!)

Undo ('U', Ctrl+'Z', Ctrl+'_')
Undoes a single move. (You can undo moves back to the start of the session.)

Redo ('R', Ctrl+'R')
Redoes a previously undone move.

Copy   Copies the current state of your game to the clipboard in text format, so that you can paste it into (say) an e-mail client or a web
message board if you're discussing the game with someone else. (Not all games support this feature.)

Solve  Transforms the puzzle instantly into its solved state. For some games (Cube) this feature is not supported at all because it  is	of
no  particular  use. For other games (such as Pattern), the solved state can be used to give you information, if you can't see how a
solution can exist at all or you want to know where you made a mistake. For still other games (such as Sixteen), automatic  solution
tells you nothing about how to get to the solution, but it does provide a useful way to get there quickly so that you can experiment
with set-piece moves and transformations.

Some games (such as Solo) are capable of solving a game ID you have typed in from elsewhere. Other games (such as Rectangles) cannot
solve  a	game  ID  they	didn't invent themself, but when they did invent the game ID they know what the solution is already. Still
other games (Pattern) can solve some external game IDs, but only if they aren't too difficult.

The 'Solve' command adds the solved state to the end of the undo chain for the puzzle. In other words, if you want  to  go  back	to
solving it yourself after seeing the answer, you can just press Undo.

Quit ('Q', Ctrl+'Q')
Closes the application entirely.

Specifying games with the game ID
There  are  two ways to save a game specification out of a puzzle and recreate it later, or recreate it in somebody else's copy of the same
puzzle.

The 'Specific' and 'Random Seed' options from the 'Game' menu (or the 'File' menu, on Mac OS X) each show a piece of  text  (a  'game  ID')
which is sufficient to reconstruct precisely the same game at a later date.

You  can  enter	either	of  these  pieces of text back into the program (via the same 'Specific' or 'Random Seed' menu options) at a later
point, and it will recreate the same game. You can also use either one as a command line argument (on Windows or Unix); see below for  more
detail.

The  difference	between  the  two forms is that a descriptive game ID is a literal description of the initial state of the game, whereas a
random seed is just a piece of arbitrary text which was provided as input to the random number generator used to create	the  puzzle.  This
means that:

o      Descriptive  game  IDs tend to be longer in many puzzles (although some, such as Cube (cube(6)), only need very short descriptions).
So a random seed is often a quicker way to note down the puzzle you're currently playing, or to tell it to somebody else so they can
play the same one as you.

o      Any  text  at  all is a valid random seed. The automatically generated ones are fifteen-digit numbers, but anything will do; you can
type in your full name, or a word you just made up, and a valid puzzle will be generated from it. This provides a  way  for  two	or
more people to race to complete the same puzzle: you think of a random seed, then everybody types it in at the same time, and nobody
has an advantage due to having seen the generated puzzle before anybody else.

o      It is often possible to convert puzzles from other sources (such as 'nonograms' or 'sudoku' from newspapers) into  descriptive  game
IDs suitable for use with these programs.

o      Random  seeds  are not guaranteed to produce the same result if you use them with a different version of the puzzle program. This is
because the generation algorithm might have been improved or modified in later versions of the code, and will  therefore	produce  a
different  result  when given the same sequence of random numbers. Use a descriptive game ID if you aren't sure that it will be used
on the same version of the program as yours.

(Use the 'About' menu option to find out the version number of the program. Programs with the same version number running on differ-
ent platforms should still be random-seed compatible.)

A  descriptive  game  ID  starts with a piece of text which encodes the parameters of the current game (such as grid size). Then there is a
colon, and after that is the description of the game's initial state. A random seed starts with a similar string of parameters, but then it
contains a hash sign followed by arbitrary data.

If  you enter a descriptive game ID, the program will not be able to show you the random seed which generated it, since it wasn't generated
from a random seed. If you enter a random seed, however, the program will be able to show you the descriptive game  ID  derived	from  that
random seed.

Note  that the game parameter strings are not always identical between the two forms. For some games, there will be parameter data provided
with the random seed which is not included in the descriptive game ID. This is because that parameter information  is  only  relevant  when
generating puzzle grids, and is not important when playing them. Thus, for example, the difficulty level in Solo (solo(6)) is not mentioned
in the descriptive game ID.

These additional parameters are also not set permanently if you type in a game ID. For example, suppose you have  Solo  set  to	'Advanced'
difficulty  level,  and	then  a friend wants your help with a 'Trivial' puzzle; so the friend reads out a random seed specifying 'Trivial'
difficulty, and you type it in. The program will generate you the same 'Trivial' grid which your friend was having trouble with,  but  once
you  have  finished  playing it, when you ask for a new game it will automatically go back to the 'Advanced' difficulty which it was previ-
ously set on.

The 'Type' menu, if present, may contain a list of preset game settings. Selecting one of these will start  a  new  random  game  with  the
parameters specified.

The  'Type' menu may also contain a 'Custom' option which allows you to fine-tune game parameters. The parameters available are specific to
each game and are described in the following sections.

Specifying game parameters on the command line
(This section does not apply to the Mac OS X version.)

The games in this collection deliberately do not ever save information on to the computer they run on: they have no high score  tables  and
no  saved preferences. (This is because I expect at least some people to play them at work, and those people will probably appreciate leav-
ing as little evidence as possible!)

However, if you do want to arrange for one of these games to default to a particular set of parameters, you can specify them on the command
line.

The  easiest  way  to do this is to set up the parameters you want using the 'Type' menu (see above), and then to select 'Random Seed' from
the 'Game' or 'File' menu (see above). The text in the 'Game ID' box will be composed of two parts, separated by a hash. The first of these
parts represents the game parameters (the size of the playing area, for example, and anything else you set using the 'Type' menu).

If you run the game with just that parameter text on the command line, it will start up with the settings you specified.

For  example: if you run Cube (see cube(6)), select 'Octahedron' from the 'Type' menu, and then go to the game ID selection, you will see a
string of the form 'o2x2#338686542711620'. Take only the part before the hash ('o2x2'), and start Cube with that text on the command  line:
'cube o2x2'.

If you copy the entire game ID on to the command line, the game will start up in the specific game that was described. This is occasionally
a more convenient way to start a particular game ID than by pasting it into the game ID selection box.

(You could also retrieve the encoded game parameters using the 'Specific' menu option instead of 'Random Seed', but if  you  do	then  some
options, such as the difficulty level in Solo, will be missing. See above for more details on this.)

Unix command-line options
(This section only applies to the Unix port.)

In addition to being able to specify game parameters on the command line (see above), there are various other options:

--game

--load These  options  respectively  determine whether the command-line argument is treated as specifying game parameters or a save file to
load. Only one should be specified. If neither of these options is specified, a guess is made based on the format of the argument.

--generate n
If this option is specified, instead of a puzzle being displayed, a number of descriptive game IDs will be invented and  printed	on
standard output. This is useful for gaining access to the game generation algorithms without necessarily using the frontend.

If game parameters are specified on the command-line, they will be used to generate the game IDs; otherwise a default set of parame-
ters will be used.

The most common use of this option is in conjunction with --print, in which case its behaviour is slightly different; see below.

--print wxh
If this option is specified, instead of a puzzle being displayed, a printed representation of one or more unsolved puzzles  is  sent
to standard output, in PostScript format.

On each page of puzzles, there will be w across and h down. If there are more puzzles than wxh, more than one page will be printed.

If  --generate has also been specified, the invented game IDs will be used to generate the printed output. Otherwise, a list of game
IDs is expected on standard input (which can be descriptive or random seeds; see above), in the same format produced by --generate.

For example:

net --generate 12 --print 2x3 7x7w | lpr

will generate two pages of printed Net puzzles (each of which will have a 7x7 wrapping grid), and pipe the output to  the  lpr  com-
mand, which on many systems will send them to an actual printer.

There are various other options which affect printing; see below.

--save file-prefix [ --save-suffix file-suffix ]
If  this	option is specified, instead of a puzzle being displayed, saved-game files for one or more unsolved puzzles are written to
files constructed from the supplied prefix and/or suffix.

If --generate has also been specified, the invented game IDs will be used to generate the printed output. Otherwise, a list of  game
IDs is expected on standard input (which can be descriptive or random seeds; see above), in the same format produced by --generate.

For example:

net --generate 12 --save game --save-suffix .sav

will generate twelve Net saved-game files with the names game0.sav to game11.sav.

--version
Prints version information about the game, and then quits.

The following options are only meaningful if --print is also specified:

--with-solutions
The set of pages filled with unsolved puzzles will be followed by the solutions to those puzzles.

--scale n
Adjusts how big each puzzle is when printed. Larger numbers make puzzles bigger; the default is 1.0.

--colour
Puzzles will be printed in colour, rather than in black and white (if supported by the puzzle).