Visit The New, Modern Unix Linux Community

Linux and UNIX Man Pages

Test Your Knowledge in Computers #181
Difficulty: Medium
The Macintosh project began in 1979 when Apple employee Jef Raskin envisioned an easy-to-use, low-cost computer for the average consumer.
True or False?
Linux & Unix Commands - Search Man Pages

netintro(4) [netbsd man page]

NETINTRO(4)						   BSD Kernel Interfaces Manual 					       NETINTRO(4)

NAME
netintro -- introduction to networking facilities SYNOPSIS
#include <sys/types.h> #include <sys/socket.h> #include <net/route.h> #include <net/if.h> DESCRIPTION
This section is a general introduction to the networking facilities available in the system. Documentation in this part of section 4 is bro- ken up into three areas: protocol families (domains), protocols, and network interfaces. All network protocols are associated with a specific protocol family. A protocol family provides basic services to the protocol implementa- tion to allow it to function within a specific network environment. These services may include packet fragmentation and reassembly, routing, addressing, and basic transport. A protocol family may support multiple methods of addressing, though the current protocol implementations do not. A protocol family normally comprises a number of protocols, one per socket(2) type. It is not required that a protocol family sup- port all socket types. A protocol family may contain multiple protocols supporting the same socket abstraction. A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol may be accessed either by creating a socket of the appropriate type and protocol family, or by requesting the protocol explicitly when creating a socket. Protocols normally accept only one type of address format, usually determined by the addressing structure inherent in the design of the protocol family/network architec- ture. Certain semantics of the basic socket abstractions are protocol specific. All protocols are expected to support the basic model for their particular socket type, but may, in addition, provide non-standard facilities or extensions to a mechanism. For example, a protocol supporting the SOCK_STREAM abstraction may allow more than one byte of out-of-band data to be transmitted per out-of-band message. A network interface is similar to a device interface. Network interfaces comprise the lowest layer of the networking subsystem, interacting with the actual transport hardware. An interface may support one or more protocol families and/or address formats. The SYNOPSIS section of each network interface entry gives a sample specification of the related drivers for use in providing a system description to the config(1) program. The DIAGNOSTICS section lists messages which may appear on the console and/or in the system error log, /var/log/messages (see syslogd(8)), due to errors in device operation. PROTOCOLS
The system currently supports the Internet protocols and some of the ISO OSI protocols. Raw socket interfaces are provided to the IP proto- col layer of the Internet, and to the IDP protocol of Xerox NS. Consult the appropriate manual pages in this section for more information regarding the support for each protocol family. ADDRESSING
Associated with each protocol family is an address format. All network address adhere to a general structure, called a sockaddr, described below. However, each protocol imposes finer and more specific structure, generally renaming the variant, which is discussed in the protocol family manual page alluded to above. struct sockaddr { u_char sa_len; u_char sa_family; char sa_data[14]; }; The field sa_len contains the total length of the of the structure, which may exceed 16 bytes. The following address values for sa_family are known to the system (and additional formats are defined for possible future implementation): #define AF_LOCAL 1 /* local to host */ #define AF_INET 2 /* internetwork: UDP, TCP, etc. */ #define AF_NS 6 /* Xerox NS protocols */ #define AF_CCITT 10 /* CCITT protocols, X.25 etc */ #define AF_HYLINK 15 /* NSC Hyperchannel */ #define AF_ISO 18 /* ISO protocols */ ROUTING
UNIX provides some packet routing facilities. The kernel maintains a routing information database, which is used in selecting the appropri- ate network interface when transmitting packets. A user process (or possibly multiple co-operating processes) maintains this database by sending messages over a special kind of socket. This supplants fixed size ioctl(2) used in earlier releases. This facility is described in route(4). INTERFACES
Each network interface in a system corresponds to a path through which messages may be sent and received. A network interface usually has a hardware device associated with it, though certain interfaces such as the loopback interface, lo(4), do not. The following ioctl(2) calls may be used to manipulate network interfaces. The ioctl(2) is made on a socket (typically of type SOCK_DGRAM) in the desired domain. Most of the requests supported in earlier releases take an ifreq structure as its parameter. This structure has the form struct ifreq { #define IFNAMSIZ 16 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; short ifru_flags; int ifru_metric; void *ifru_data; } ifr_ifru; #define ifr_addr ifr_ifru.ifru_addr /* address */ #define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */ #define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */ #define ifr_flags ifr_ifru.ifru_flags /* flags */ #define ifr_metric ifr_ifru.ifru_metric /* metric */ #define ifr_data ifr_ifru.ifru_data /* for use by interface */ }; Calls which are now deprecated are: SIOCSIFADDR Set interface address for protocol family. Following the address assignment, the ``initialization'' routine for the inter- face is called. SIOCSIFDSTADDR Set point to point address for protocol family and interface. SIOCSIFBRDADDR Set broadcast address for protocol family and interface. ioctl(2) requests to obtain addresses and requests both to set and retrieve other data are still fully supported and use the ifreq structure: SIOCGIFADDR Get interface address for protocol family. SIOCGIFDSTADDR Get point to point address for protocol family and interface. SIOCGIFBRDADDR Get broadcast address for protocol family and interface. SIOCSIFFLAGS Set interface flags field. If the interface is marked down, any processes currently routing packets through the interface are notified; some interfaces may be reset so that incoming packets are no longer received. When marked up again, the inter- face is reinitialized. SIOCGIFFLAGS Get interface flags. SIOCSIFMETRIC Set interface routing metric. The metric is used only by user-level routers. SIOCGIFMETRIC Get interface metric. There are two requests that make use of a new structure: SIOCAIFADDR An interface may have more than one address associated with it in some protocols. This request provides a means to add addi- tional addresses (or modify characteristics of the primary address if the default address for the address family is speci- fied). Rather than making separate calls to set destination or broadcast addresses, or network masks (now an integral fea- ture of multiple protocols) a separate structure, ifaliasreq, is used to specify all three facets simultaneously (see below). One would use a slightly tailored version of this struct specific to each family (replacing each sockaddr by one of the fam- ily-specific type). Where the sockaddr itself is larger than the default size, one needs to modify the ioctl(2) identifier itself to include the total size, as described in ioctl(2). SIOCDIFADDR This requests deletes the specified address from the list associated with an interface. It also uses the ifaliasreq struc- ture to allow for the possibility of protocols allowing multiple masks or destination addresses, and also adopts the conven- tion that specification of the default address means to delete the first address for the interface belonging to the address family in which the original socket was opened. Request making use of the ifconf structure: SIOCGIFCONF Get interface configuration list. This request takes an ifconf structure (see below) as a value-result parameter. The ifc_len field should be initially set to the size of the buffer pointed to by ifc_buf. On return it will contain the length, in bytes, of the configuration list. /* * Structure used in SIOC[AD]IFADDR request. */ struct ifaliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr ifra_addr; struct sockaddr ifra_dstaddr; #define ifra_broadaddr ifra_dstaddr struct sockaddr ifra_mask; }; /* * Structure used in SIOCGIFCONF request. * Used to retrieve interface configuration * for machine (useful for programs which * must know all networks accessible). */ struct ifconf { int ifc_len; /* size of associated buffer */ union { void *ifcu_buf; struct ifreq *ifcu_req; } ifc_ifcu; #define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */ #define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */ }; SEE ALSO
config(1), ioctl(2), socket(2), intro(4), routed(8) HISTORY
The netintro manual appeared in 4.3BSD-Tahoe. BSD
September 7, 2006 BSD

Featured Tech Videos