Linux & Unix Commands - Search Man Pages

Select Section of Man Page:

Select Man Page Repository:

REMAINDER(P)POSIX Programmer's Manual REMAINDER(P)NAMEremainder, remainderf, remainderl - remainder functionSYNOPSIS#include <math.h> double remainder(double x, double y); float remainderf(float x, float y); long double remainderl(long double x, long double y);DESCRIPTIONThese functions shall return the floating-point remainder r= x- ny when y is non-zero. The value n is the integral value nearest the exact value x/ y. When |n-x/y|=0.5, the value n is chosen to be even. The behavior of remainder() shall be independent of the rounding mode.RETURN VALUEUpon successful completion, these functions shall return the floating-point remainder r= x- ny when y is non-zero. If x or y is NaN, a NaN shall be returned. If x is infinite or y is 0 and the other is non-NaN, a domain error shall occur, and either a NaN (if supported), or an implementation-defined value shall be returned.ERRORSThese functions shall fail if: Domain Error The x argument is +-Inf, or the y argument is +-0 and the other argument is non- NaN. If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception shall be raised. The following sections are informative.EXAMPLESNone.APPLICATION USAGEOn error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.RATIONALENone.FUTURE DIRECTIONSNone.SEE ALSOabs() , div() , feclearexcept() , fetestexcept() , ldiv() , the Base Definitions volume of IEEE Std 1003.1-2001, Section 4.18, Treatment of Error Conditions for Mathematical Func- tions, <math.h>COPYRIGHTPortions of this text are reprinted and reproduced in electronic form from IEEE Std 1003.1, 2003 Edition, Standard for Information TechnologyPortable Operating System Interface (POSIX), The Open Group Base Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics Engineers, Inc and The Open Group. In the event of any discrepancy between this version and the original IEEE and The Open Group Standard, the original IEEE and The Open Group Standard is the referee document. The orig- inal Standard can be obtained online at http://www.opengroup.org/unix/online.html .--IEEE/The Open Group 2003 REMAINDER(P)

All times are GMT -4. The time now is 05:26 AM.

Unix & Linux Forums Content Copyright©1993-2018. All Rights Reserved.

×

UNIX.COM Login