👤
Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages
Man Page or Keyword Search:
Select Section of Man Page:
Select Man Page Repository:

Linux 2.6 - man page for cacosl (linux section 3)

CACOS(3)			    Linux Programmer's Manual				 CACOS(3)

NAME
       cacos, cacosf, cacosl - complex arc cosine

SYNOPSIS
       #include <complex.h>

       double complex cacos(double complex z);
       float complex cacosf(float complex z);
       long double complex cacosl(long double complex z);

       Link with -lm.

DESCRIPTION
       The  cacos()  function  calculates  the	complex  arc  cosine of z.  If y = cacos(z), then
       z = ccos(y).  The real part of y is chosen in the interval [0,pi].

       One has:

	   cacos(z) = -i * clog(z + i * csqrt(1 - z * z))

VERSIONS
       These functions first appeared in glibc in version 2.1.

CONFORMING TO
       C99.

EXAMPLE
       /* Link with "-lm" */

       #include <complex.h>
       #include <stdlib.h>
       #include <unistd.h>
       #include <stdio.h>

       int
       main(int argc, char *argv[])
       {
	   double complex z, c, f;
	   double complex i = I;

	   if (argc != 3) {
	       fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
	       exit(EXIT_FAILURE);
	   }

	   z = atof(argv[1]) + atof(argv[2]) * I;

	   c = cacos(z);

	   printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));

	   f = -i * clog(z + i * csqrt(1 - z * z));

	   printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

	   exit(EXIT_SUCCESS);
       }

SEE ALSO
       ccos(3), clog(3), complex(7)

COLOPHON
       This page is part of release 3.55 of the Linux man-pages project.  A  description  of  the
       project,     and    information	  about    reporting	bugs,	 can	be    found    at
       http://www.kernel.org/doc/man-pages/.

					    2011-09-15					 CACOS(3)


All times are GMT -4. The time now is 08:45 AM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
×
UNIX.COM Login
Username:
Password:  
Show Password





Not a Forum Member?
Forgot Password?