Today (Saturday) We will make some minor tuning adjustments to MySQL.

You may experience 2 up to 10 seconds "glitch time" when we restart MySQL. We expect to make these adjustments around 1AM Eastern Daylight Saving Time (EDT) US.

Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

FreeBSD 11.0 - man page for sf_buf_page (freebsd section 9)

SF_BUF(9)						   BSD Kernel Developer's Manual						 SF_BUF(9)

sf_buf -- manage temporary kernel address space mapping for memory pages
#include <sys/sf_buf.h> struct sf_buf * sf_buf_alloc(struct vm_page *m, int flags); void sf_buf_free(struct sf_buf *sf); vm_offset_t sf_buf_kva(struct sf_buf *sf); struct vm_page * sf_buf_page(struct sf_buf *sf);
The sf_buf interface, historically the sendfile(2) buffer interface, allows kernel subsystems to manage temporary kernel address space map- pings for physical memory pages. On systems with a direct memory map region (allowing all physical pages to be visible in the kernel address space at all times), the struct sf_buf will point to an address in the direct map region; on systems without a direct memory map region, the struct sf_buf will manage a temporary kernel address space mapping valid for the lifetime of the struct sf_buf. Call sf_buf_alloc() to allocate a struct sf_buf for a physical memory page. sf_buf_alloc() is not responsible for arranging for the page to be present in physical memory; the caller should already have arranged for the page to be wired, i.e., by calling vm_page_wire(9). Several flags may be passed to sf_buf_alloc(): SFB_CATCH Cause sf_buf_alloc() to abort and return NULL if a signal is received waiting for a struct sf_buf to become available. SFB_NOWAIT Cause sf_buf_alloc() to return NULL rather than sleeping if a struct sf_buf is not immediately available. SFB_CPUPRIVATE Cause sf_buf_alloc() to only arrange that the temporary mapping be valid on the current CPU, avoiding unnecessary TLB shoot- downs for mappings that will only be accessed on a single CPU at a time. The caller must ensure that accesses to the virtual address occur only on the CPU from which sf_buf_alloc() was invoked, perhaps by using sched_pin(). Call sf_buf_kva() to return a kernel mapped address for the page. Call sf_buf_page() to return a pointer to the page originally passed into sf_buf_alloc(). Call sf_buf_free() to release the struct sf_buf reference. The caller is responsible for releasing any wiring they have previously acquired on the physical page; sf_buf_free() releases only the temporary kernel address space mapping, not the page itself. Uses of this interface include managing mappings of borrowed pages from user memory, such as in zero-copy socket I/O, or pages of memory from the buffer cache referenced by mbuf external storage for sendfile(2).
sendfile(2), vm_page_wire(9)
The struct sf_buf API was designed and implemented by Alan L. Cox. This manual page was written by Robert N. M. Watson.
January 28, 2007 BSD

Featured Tech Videos