Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

atanh(3) [freebsd man page]

ATANH(3)						   BSD Library Functions Manual 						  ATANH(3)

NAME
atanh, atanhf, atanhl -- inverse hyperbolic tangent functions LIBRARY
Math Library (libm, -lm) SYNOPSIS
#include <math.h> double atanh(double x); float atanhf(float x); long double atanhl(long double x); DESCRIPTION
The atanh(), atanhf(), and atanhl() functions compute the inverse hyperbolic tangent of the real argument x. For a discussion of error due to roundoff, see math(3). RETURN VALUES
These functions return the inverse hyperbolic tangent of x if successful. If the argument has absolute value 1, a divide-by-zero exception is raised and an infinity is returned. If |x| > 1, an invalid exception is raised and an NaN is returned. SEE ALSO
acosh(3), asinh(3), exp(3), fenv(3), math(3) HISTORY
The atanh(), atanhf(), and atanhl() functions appeared in 4.3BSD, FreeBSD 2.0, and FreeBSD 10.0, respectively. BSD
June 9, 2013 BSD

Check Out this Related Man Page

ATANH(3)						   BSD Library Functions Manual 						  ATANH(3)

NAME
atanh -- inverse hyperbolic tangent function SYNOPSIS
#include <math.h> double atanh(double x); long double atanhl(long double x); float atanhf(float x); DESCRIPTION
The atanh() function computes the inverse hyperbolic tangent of the real argument x. SPECIAL VALUES
atanh(+-0) returns +-0. atanh(+-1) returns +-infinity and raises the "divide-by-zero" floating-point exception. atanh(x) returns a NaN and raises the "invalid" floating-point exception for |x| > 1. VECTOR OPERATIONS
If you need to apply the atanh() function to SIMD vectors or arrays, using the following functions provided by the Accelerate.framework may give significantly better performance: #include <Accelerate/Accelerate.h> vFloat vatanhf(vFloat x); void vvatanhf(float *y, const float *x, const int *n); void vvatanh(double *y, const double *x, const int *n); SEE ALSO
acosh(3), asinh(3), exp(3), math(3) STANDARDS
The atanh() function conforms to ISO/IEC 9899:2011. 4.3 Berkeley Distribution December 11, 2006 4.3 Berkeley Distribution
Man Page