Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

zgeqr2(3) [debian man page]

zgeqr2.f(3)							      LAPACK							       zgeqr2.f(3)

NAME
zgeqr2.f - SYNOPSIS
Functions/Subroutines subroutine zgeqr2 (M, N, A, LDA, TAU, WORK, INFO) ZGEQR2 Function/Subroutine Documentation subroutine zgeqr2 (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGEQR2 Purpose: ZGEQR2 computes a QR factorization of a complex m by n matrix A: A = Q * R. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). Definition at line 122 of file zgeqr2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zgeqr2.f(3)

Check Out this Related Man Page

zgeqr2p.f(3)							      LAPACK							      zgeqr2p.f(3)

NAME
zgeqr2p.f - SYNOPSIS
Functions/Subroutines subroutine zgeqr2p (M, N, A, LDA, TAU, WORK, INFO) ZGEQR2P Function/Subroutine Documentation subroutine zgeqr2p (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGEQR2P Purpose: ZGEQR2P computes a QR factorization of a complex m by n matrix A: A = Q * R. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). Definition at line 122 of file zgeqr2p.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zgeqr2p.f(3)
Man Page