debian man page for zgbequ

Query: zgbequ

OS: debian

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

zgbequ.f(3)							      LAPACK							       zgbequ.f(3)

NAME
zgbequ.f -
SYNOPSIS
Functions/Subroutines subroutine zgbequ (M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO) ZGBEQU Function/Subroutine Documentation subroutine zgbequ (integerM, integerN, integerKL, integerKU, complex*16, dimension( ldab, * )AB, integerLDAB, double precision, dimension( * )R, double precision, dimension( * )C, double precisionROWCND, double precisionCOLCND, double precisionAMAX, integerINFO) ZGBEQU Purpose: ZGBEQU computes row and column scalings intended to equilibrate an M-by-N band matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. R(i) and C(j) are restricted to be between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. KL KL is INTEGER The number of subdiagonals within the band of A. KL >= 0. KU KU is INTEGER The number of superdiagonals within the band of A. KU >= 0. AB AB is COMPLEX*16 array, dimension (LDAB,N) The band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1. R R is DOUBLE PRECISION array, dimension (M) If INFO = 0, or INFO > M, R contains the row scale factors for A. C C is DOUBLE PRECISION array, dimension (N) If INFO = 0, C contains the column scale factors for A. ROWCND ROWCND is DOUBLE PRECISION If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R. COLCND COLCND is DOUBLE PRECISION If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C. AMAX AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 154 of file zgbequ.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zgbequ.f(3)
Related Man Pages
zgbequ(l) - redhat
dgbequb(3) - debian
dgbequb.f(3) - debian
zgbequ.f(3) - debian
dgbequb(3) - centos
Similar Topics in the Unix Linux Community
How can I do this in VI editor?
Is UNIX an open source OS ?
Detecting unused variables...
One instance of comparing grep and awk
My first PERL incarnation... Audio Oscillograph