debian man page for sgehd2

Query: sgehd2

OS: debian

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

sgehd2.f(3)							      LAPACK							       sgehd2.f(3)

NAME
sgehd2.f -
SYNOPSIS
Functions/Subroutines subroutine sgehd2 (N, ILO, IHI, A, LDA, TAU, WORK, INFO) SGEHD2 Function/Subroutine Documentation subroutine sgehd2 (integerN, integerILO, integerIHI, real, dimension( lda, * )A, integerLDA, real, dimension( * )TAU, real, dimension( * )WORK, integerINFO) SGEHD2 Purpose: SGEHD2 reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: Q**T * A * Q = H . Parameters: N N is INTEGER The order of the matrix A. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to SGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 <= ILO <= IHI <= max(1,N). A A is REAL array, dimension (LDA,N) On entry, the n by n general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU TAU is REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of (ihi-ilo) elementary reflectors Q = H(ilo) H(ilo+1) . . . H(ihi-1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAU(i). The contents of A are illustrated by the following example, with n = 7, ilo = 2 and ihi = 6: on entry, on exit, ( a a a a a a a ) ( a a h h h h a ) ( a a a a a a ) ( a h h h h a ) ( a a a a a a ) ( h h h h h h ) ( a a a a a a ) ( v2 h h h h h ) ( a a a a a a ) ( v2 v3 h h h h ) ( a a a a a a ) ( v2 v3 v4 h h h ) ( a ) ( a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). Definition at line 150 of file sgehd2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 sgehd2.f(3)
Related Man Pages
cgehd2(3) - debian
dgehd2.f(3) - debian
sgehd2.f(3) - debian
dgehd2.f(3) - centos
sgehd2.f(3) - centos
Similar Topics in the Unix Linux Community
How can I do this in VI editor?
Introduction
One instance of comparing grep and awk
Find columns in a file based on header and print to new file
How to copy a column of multiple files and paste into new excel file (next to column)?