debian man page for dlahrd

Query: dlahrd

OS: debian

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

dlahrd.f(3)							      LAPACK							       dlahrd.f(3)

NAME
dlahrd.f -
SYNOPSIS
Functions/Subroutines subroutine dlahrd (N, K, NB, A, LDA, TAU, T, LDT, Y, LDY) DLAHRD Function/Subroutine Documentation subroutine dlahrd (integerN, integerK, integerNB, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( nb )TAU, double precision, dimension( ldt, nb )T, integerLDT, double precision, dimension( ldy, nb )Y, integerLDY) DLAHRD Purpose: DLAHRD reduces the first NB columns of a real general n-by-(n-k+1) matrix A so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal similarity transformation Q**T * A * Q. The routine returns the matrices V and T which determine Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T. This is an OBSOLETE auxiliary routine. This routine will be 'deprecated' in a future release. Please use the new routine DLAHR2 instead. Parameters: N N is INTEGER The order of the matrix A. K K is INTEGER The offset for the reduction. Elements below the k-th subdiagonal in the first NB columns are reduced to zero. NB NB is INTEGER The number of columns to be reduced. A A is DOUBLE PRECISION array, dimension (LDA,N-K+1) On entry, the n-by-(n-k+1) general matrix A. On exit, the elements on and above the k-th subdiagonal in the first NB columns are overwritten with the corresponding elements of the reduced matrix; the elements below the k-th subdiagonal, with the array TAU, represent the matrix Q as a product of elementary reflectors. The other columns of A are unchanged. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU TAU is DOUBLE PRECISION array, dimension (NB) The scalar factors of the elementary reflectors. See Further Details. T T is DOUBLE PRECISION array, dimension (LDT,NB) The upper triangular matrix T. LDT LDT is INTEGER The leading dimension of the array T. LDT >= NB. Y Y is DOUBLE PRECISION array, dimension (LDY,NB) The n-by-nb matrix Y. LDY LDY is INTEGER The leading dimension of the array Y. LDY >= N. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix Q is represented as a product of nb elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in A(i+k+1:n,i), and tau in TAU(i). The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: A := (I - V*T*V**T) * (A - Y*V**T). The contents of A on exit are illustrated by the following example with n = 7, k = 3 and nb = 2: ( a h a a a ) ( a h a a a ) ( a h a a a ) ( h h a a a ) ( v1 h a a a ) ( v1 v2 a a a ) ( v1 v2 a a a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). Definition at line 170 of file dlahrd.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 dlahrd.f(3)
Related Man Pages
clahrd(3) - debian
dlahr2(3) - debian
dlahr2.f(3) - debian
slahrd.f(3) - debian
dlahrd.f(3) - centos
Similar Topics in the Unix Linux Community
Adding the individual columns of a matrix.
Installing Dash Shell on OS X Lion
awk or sed - Convert 2 lines to 1 line
New UNIX and Linux History Sections
My first PERL incarnation... Audio Oscillograph