Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dlaed5.f(3) [debian man page]

dlaed5.f(3)							      LAPACK							       dlaed5.f(3)

NAME
dlaed5.f - SYNOPSIS
Functions/Subroutines subroutine dlaed5 (I, D, Z, DELTA, RHO, DLAM) DLAED5 Function/Subroutine Documentation subroutine dlaed5 (integerI, double precision, dimension( 2 )D, double precision, dimension( 2 )Z, double precision, dimension( 2 )DELTA, double precisionRHO, double precisionDLAM) DLAED5 Purpose: This subroutine computes the I-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) + RHO * Z * transpose(Z) . The diagonal elements in the array D are assumed to satisfy D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. Parameters: I I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D D is DOUBLE PRECISION array, dimension (2) The original eigenvalues. We assume D(1) < D(2). Z Z is DOUBLE PRECISION array, dimension (2) The components of the updating vector. DELTA DELTA is DOUBLE PRECISION array, dimension (2) The vector DELTA contains the information necessary to construct the eigenvectors. RHO RHO is DOUBLE PRECISION The scalar in the symmetric updating formula. DLAM DLAM is DOUBLE PRECISION The computed lambda_I, the I-th updated eigenvalue. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Contributors: Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Definition at line 109 of file dlaed5.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 dlaed5.f(3)

Check Out this Related Man Page

dlasd5.f(3)							      LAPACK							       dlasd5.f(3)

NAME
dlasd5.f - SYNOPSIS
Functions/Subroutines subroutine dlasd5 (I, D, Z, DELTA, RHO, DSIGMA, WORK) DLASD5 Function/Subroutine Documentation subroutine dlasd5 (integerI, double precision, dimension( 2 )D, double precision, dimension( 2 )Z, double precision, dimension( 2 )DELTA, double precisionRHO, double precisionDSIGMA, double precision, dimension( 2 )WORK) DLASD5 Purpose: This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. Parameters: I I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D D is DOUBLE PRECISION array, dimension ( 2 ) The original eigenvalues. We assume 0 <= D(1) < D(2). Z Z is DOUBLE PRECISION array, dimension ( 2 ) The components of the updating vector. DELTA DELTA is DOUBLE PRECISION array, dimension ( 2 ) Contains (D(j) - sigma_I) in its j-th component. The vector DELTA contains the information necessary to construct the eigenvectors. RHO RHO is DOUBLE PRECISION The scalar in the symmetric updating formula. DSIGMA DSIGMA is DOUBLE PRECISION The computed sigma_I, the I-th updated eigenvalue. WORK WORK is DOUBLE PRECISION array, dimension ( 2 ) WORK contains (D(j) + sigma_I) in its j-th component. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Contributors: Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Definition at line 117 of file dlasd5.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 dlasd5.f(3)
Man Page

Featured Tech Videos