Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

asr(2rheolef) [debian man page]

asr(2rheolef)							    rheolef-6.1 						     asr(2rheolef)

NAME
asr - associative sparse matrix (rheolef-6.1) SYNOPSYS
Associative sparse matrix container stored row by row using the STL map class. IMPLEMENTATION NOTE
Implementation use MPI-1.1 and is inspired from Mat_MPI in PETSc-2.0.22. TO DO
For efficiency purpose, the assembly phase may access directly to the asr representation, without crossing the reference counting and pointer handler. Something like the iterator for dense vectors. IMPLEMENTATION
template<class R> class basic_asr : public smart_pointer<R> { public: // typedefs: typedef typename R::size_type size_type; typedef typename R::element_type element_type; typedef typename R::memory_type memory_type; typedef distributor::communicator_type communicator_type; // allocators/deallocators: basic_asr (size_type dis_nrow = 0, size_type dis_ncol = 0); basic_asr (const distributor& row_ownership, const distributor& col_ownership); explicit basic_asr (const csr<element_type,memory_type>&); // accessors: const communicator_type& comm() const; // local sizes size_type nrow () const; size_type ncol () const; size_type nnz () const; // global sizes size_type dis_nrow () const; size_type dis_ncol () const; size_type dis_nnz () const; const distributor& row_ownership() const; const distributor& col_ownership() const; // range on local memory size_type row_first_index () const; size_type row_last_index () const; size_type col_first_index () const; size_type col_last_index () const; // global modifiers: element_type& dis_entry (size_type dis_i, size_type dis_j); void dis_entry_assembly(); void dis_entry_assembly_begin (); void dis_entry_assembly_end (); void resize (size_type dis_nrow = 0, size_type dis_ncol = 0); // output: void dump (const std::string& name) const; }; template <class T, class M = rheo_default_memory_model> class asr { typedef M memory_type; }; template <class T> class asr<T,sequential> : public basic_asr<asr_seq_rep<T> > { public: typedef typename basic_asr<asr_seq_rep<T> >::size_type size_type; typedef sequential memory_type; asr (size_type dis_nrow = 0, size_type dis_ncol = 0); asr (const distributor& row_ownership, const distributor& col_ownertship); explicit asr(const csr<T,memory_type>&); }; #ifdef _RHEOLEF_HAVE_MPI template <class T> class asr<T,distributed> : public basic_asr<asr_mpi_rep<T> > { public: typedef distributed memory_type; typedef typename basic_asr<asr_mpi_rep<T> >::size_type size_type; asr (size_type dis_nrow = 0, size_type dis_ncol = 0); asr (const distributor& row_ownership, const distributor& col_ownertship); explicit asr(const csr<T,memory_type>&); }; #endif // _RHEOLEF_HAVE_MPI // inputs/outputs: template <class T, class M> idiststream& operator >> (idiststream& s, asr<T,M>& x); template <class T, class M> odiststream& operator << (odiststream& s, const asr<T,M>& x); rheolef-6.1 rheolef-6.1 asr(2rheolef)

Check Out this Related Man Page

vec(2rheolef)							    rheolef-6.1 						     vec(2rheolef)

NAME
vec - vector in distributed environment (rheolef-6.1) SYNOPSYS
STL-like vector container for a sequential or distributed memory machine model. Additional operation fom classical algebra. EXAMPLE
A sample usage of the class is: int main(int argc, char**argv) { environment distributed(argc, argv); vec<double> x(100, 3.14); dout << x << endl; } IMPLEMENTATION NOTE
Implementation use array<T,M>. IMPLEMENTATION
template <class T, class M = rheo_default_memory_model> class vec : public array<T, M> { public: // typedef: typedef array<T, M> base; typedef typename base::size_type size_type; typedef std::ptrdiff_t difference_type; #ifdef TODO // pb compile avec boost sur foehn: typedef typename base::difference_type difference_type; #endif // TODO typedef basic_range<size_type, difference_type> range_type; typedef typename base::reference reference; typedef typename base::const_reference const_reference; typedef typename base::iterator iterator; typedef typename base::const_iterator const_iterator; // allocator/deallocator: vec (const distributor& ownership, const T& init_val = std::numeric_limits<T>::max()); vec(size_type dis_size = 0, const T& init_val = std::numeric_limits<T>::max()); void resize ( const distributor& ownership, const T& init_val = std::numeric_limits<T>::max()); void resize ( size_type size = 0, const T& init_val = std::numeric_limits<T>::max()); // accessors: const_reference operator[] (size_type i) const; reference operator[] (size_type i); T max_abs () const; // range: vec(const vec_range<T,M>& vr); vec(const vec_range_const<T,M>& vr); vec<T,M>& operator= (const vec_range<T,M>& vr); vec<T,M>& operator= (const vec_range_const<T,M>& vr); vec_range_const<T,M> operator[] (const range_type& r) const; vec_range<T,M> operator[] (const range_type& r); // assignment to a constant: vec<T,M>& operator= (const int& expr); vec<T,M>& operator= (const T& expr); // expression template: template<typename Expr> vec (const Expr& expr); template<typename Expr> vec<T,M>& operator= (const vec_expr<Expr>& expr); template<typename Expr> vec<T,M>& operator+= (const Expr& expr); template<typename Expr> vec<T,M>& operator-= (const Expr& expr); // initializer list (c++ 2011): #ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST vec (const std::initializer_list<vec_concat_value<T,M> >& init_list); vec<T,M>& operator= (const std::initializer_list<vec_concat_value<T,M> >& init_list); #endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST }; rheolef-6.1 rheolef-6.1 vec(2rheolef)
Man Page