# zptrfs(3) [centos man page]

zptrfs.f(3) LAPACK zptrfs.f(3)NAME

zptrfs.f-SYNOPSIS

Functions/Subroutines subroutine zptrfs (UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO) ZPTRFSFunction/Subroutine Documentation subroutine zptrfs (characterUPLO, integerN, integerNRHS, double precision, dimension( * )D, complex*16, dimension( * )E, double precision, dimension( * )DF, complex*16, dimension( * )EF, complex*16, dimension( ldb, * )B, integerLDB, complex*16, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integerINFO) ZPTRFS Purpose: ZPTRFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution. Parameters: UPLO UPLO is CHARACTER*1 Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and the form of the factorization: = 'U': E is the superdiagonal of A, and A = U**H*D*U; = 'L': E is the subdiagonal of A, and A = L*D*L**H. (The two forms are equivalent if A is real.) N N is INTEGER The order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. D D is DOUBLE PRECISION array, dimension (N) The n real diagonal elements of the tridiagonal matrix A. E E is COMPLEX*16 array, dimension (N-1) The (n-1) off-diagonal elements of the tridiagonal matrix A (see UPLO). DF DF is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization computed by ZPTTRF. EF EF is COMPLEX*16 array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ZPTTRF (see UPLO). B B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZPTTRS. On exit, the improved solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR FERR is DOUBLE PRECISION array, dimension (NRHS) The forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). BERR BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK WORK is COMPLEX*16 array, dimension (N) RWORK RWORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value Internal Parameters: ITMAX is the maximum number of steps of iterative refinement. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 183 of file zptrfs.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 zptrfs.f(3)