# zppsv(3) [centos man page]

zppsv.f(3) LAPACK zppsv.f(3)NAME

zppsv.f-SYNOPSIS

Functions/Subroutines subroutine zppsv (UPLO, N, NRHS, AP, B, LDB, INFO) ZPPSV computes the solution to system of linear equations A * X = B for OTHER matricesFunction/Subroutine Documentation subroutine zppsv (characterUPLO, integerN, integerNRHS, complex*16, dimension( * )AP, complex*16, dimension( ldb, * )B, integerLDB, integerINFO) ZPPSV computes the solution to system of linear equations A * X = B for OTHER matrices Purpose: ZPPSV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian positive definite matrix stored in packed format and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, in the same storage format as A. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Two-dimensional storage of the Hermitian matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] Definition at line 145 of file zppsv.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 zppsv.f(3)

## Check Out this Related Man Page

cppsv.f(3) LAPACK cppsv.f(3)NAME

cppsv.f-SYNOPSIS

Functions/Subroutines subroutine cppsv (UPLO, N, NRHS, AP, B, LDB, INFO) CPPSV computes the solution to system of linear equations A * X = B for OTHER matricesFunction/Subroutine Documentation subroutine cppsv (characterUPLO, integerN, integerNRHS, complex, dimension( * )AP, complex, dimension( ldb, * )B, integerLDB, integerINFO) CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices Purpose: CPPSV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian positive definite matrix stored in packed format and X and B are N-by-NRHS matrices. The Cholesky decomposition is used to factor A as A = U**H * U, if UPLO = 'U', or A = L * L**H, if UPLO = 'L', where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations A * X = B. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. See below for further details. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, in the same storage format as A. B B is COMPLEX array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The packed storage scheme is illustrated by the following example when N = 4, UPLO = 'U': Two-dimensional storage of the Hermitian matrix A: a11 a12 a13 a14 a22 a23 a24 a33 a34 (aij = conjg(aji)) a44 Packed storage of the upper triangle of A: AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] Definition at line 145 of file cppsv.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cppsv.f(3)