Query: zlaed0
OS: centos
Section: 3
Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar
zlaed0.f(3) LAPACK zlaed0.f(3)NAMEzlaed0.f -SYNOPSISFunctions/Subroutines subroutine zlaed0 (QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO) ZLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. Function/Subroutine Documentation subroutine zlaed0 (integerQSIZ, integerN, double precision, dimension( * )D, double precision, dimension( * )E, complex*16, dimension( ldq, * )Q, integerLDQ, complex*16, dimension( ldqs, * )QSTORE, integerLDQS, double precision, dimension( * )RWORK, integer, dimension( * )IWORK, integerINFO) ZLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. Purpose: Using the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix. Parameters: QSIZ QSIZ is INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N N is INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D D is DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E E is DOUBLE PRECISION array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q Q is COMPLEX*16 array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N). IWORK IWORK is INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK RWORK is DOUBLE PRECISION array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE QSTORE is COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS LDQS is INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 145 of file zlaed0.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zlaed0.f(3)
Related Man Pages |
---|
claed0.f(3) - debian |
zlaed0.f(3) - debian |
claed0(3) - centos |
claed0.f(3) - centos |
slaed0.f(3) - centos |
Similar Topics in the Unix Linux Community |
---|
Puts a new dimension on divide by zero... ;o) |