Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

zhptri.f(3) [centos man page]

zhptri.f(3)							      LAPACK							       zhptri.f(3)

NAME
zhptri.f - SYNOPSIS
Functions/Subroutines subroutine zhptri (UPLO, N, AP, IPIV, WORK, INFO) ZHPTRI Function/Subroutine Documentation subroutine zhptri (characterUPLO, integerN, complex*16, dimension( * )AP, integer, dimension( * )IPIV, complex*16, dimension( * )WORK, integerINFO) ZHPTRI Purpose: ZHPTRI computes the inverse of a complex Hermitian indefinite matrix A in packed storage using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHPTRF. Parameters: UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (Hermitian) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHPTRF. WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 110 of file zhptri.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zhptri.f(3)

Check Out this Related Man Page

csptri.f(3)							      LAPACK							       csptri.f(3)

NAME
csptri.f - SYNOPSIS
Functions/Subroutines subroutine csptri (UPLO, N, AP, IPIV, WORK, INFO) CSPTRI Function/Subroutine Documentation subroutine csptri (characterUPLO, integerN, complex, dimension( * )AP, integer, dimension( * )IPIV, complex, dimension( * )WORK, integerINFO) CSPTRI Purpose: CSPTRI computes the inverse of a complex symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF. Parameters: UPLO UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T. N N is INTEGER The order of the matrix A. N >= 0. AP AP is COMPLEX array, dimension (N*(N+1)/2) On entry, the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSPTRF, stored as a packed triangular matrix. On exit, if INFO = 0, the (symmetric) inverse of the original matrix, stored as a packed triangular matrix. The j-th column of inv(A) is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. IPIV IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSPTRF. WORK WORK is COMPLEX array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its inverse could not be computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 110 of file csptri.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 csptri.f(3)
Man Page

Featured Tech Videos