Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

zgerq2.f(3) [centos man page]

zgerq2.f(3)							      LAPACK							       zgerq2.f(3)

NAME
zgerq2.f - SYNOPSIS
Functions/Subroutines subroutine zgerq2 (M, N, A, LDA, TAU, WORK, INFO) ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Function/Subroutine Documentation subroutine zgerq2 (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. Purpose: ZGERQ2 computes an RQ factorization of a complex m by n matrix A: A = R * Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (M) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i). Definition at line 124 of file zgerq2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zgerq2.f(3)

Check Out this Related Man Page

zgeql2.f(3)							      LAPACK							       zgeql2.f(3)

NAME
zgeql2.f - SYNOPSIS
Functions/Subroutines subroutine zgeql2 (M, N, A, LDA, TAU, WORK, INFO) ZGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm. Function/Subroutine Documentation subroutine zgeql2 (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerINFO) ZGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm. Purpose: ZGEQL2 computes a QL factorization of a complex m by n matrix A: A = Q * L. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the m by n lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is COMPLEX*16 array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i). Definition at line 124 of file zgeql2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zgeql2.f(3)
Man Page

Featured Tech Videos