Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

zgeqrt.f(3) [centos man page]

zgeqrt.f(3)							      LAPACK							       zgeqrt.f(3)

NAME
zgeqrt.f - SYNOPSIS
Functions/Subroutines subroutine zgeqrt (M, N, NB, A, LDA, T, LDT, WORK, INFO) ZGEQRT Function/Subroutine Documentation subroutine zgeqrt (integerM, integerN, integerNB, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldt, * )T, integerLDT, complex*16, dimension( * )WORK, integerINFO) ZGEQRT Purpose: ZGEQRT computes a blocked QR factorization of a complex M-by-N matrix A using the compact WY representation of Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. NB NB is INTEGER The block size to be used in the blocked QR. MIN(M,N) >= NB >= 1. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if M >= N); the elements below the diagonal are the columns of V. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). T T is COMPLEX*16 array, dimension (LDT,MIN(M,N)) The upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks. See below for further details. LDT LDT is INTEGER The leading dimension of the array T. LDT >= NB. WORK WORK is COMPLEX*16 array, dimension (NB*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix V stores the elementary reflectors H(i) in the i-th column below the diagonal. For example, if M=5 and N=3, the matrix V is V = ( 1 ) ( v1 1 ) ( v1 v2 1 ) ( v1 v2 v3 ) ( v1 v2 v3 ) where the vi's represent the vectors which define H(i), which are returned in the matrix A. The 1's along the diagonal of V are not stored in A. Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each block is of order NB except for the last block, which is of order IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB for the last block) T's are stored in the NB-by-N matrix T as T = (T1 T2 ... TB). Definition at line 142 of file zgeqrt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zgeqrt.f(3)

Check Out this Related Man Page

zgeqrt.f(3)							      LAPACK							       zgeqrt.f(3)

NAME
zgeqrt.f - SYNOPSIS
Functions/Subroutines subroutine zgeqrt (M, N, NB, A, LDA, T, LDT, WORK, INFO) ZGEQRT Function/Subroutine Documentation subroutine zgeqrt (integerM, integerN, integerNB, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( ldt, * )T, integerLDT, complex*16, dimension( * )WORK, integerINFO) ZGEQRT Purpose: ZGEQRT computes a blocked QR factorization of a complex M-by-N matrix A using the compact WY representation of Q. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. NB NB is INTEGER The block size to be used in the blocked QR. MIN(M,N) >= NB >= 1. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if M >= N); the elements below the diagonal are the columns of V. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). T T is COMPLEX*16 array, dimension (LDT,MIN(M,N)) The upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks. See below for further details. LDT LDT is INTEGER The leading dimension of the array T. LDT >= NB. WORK WORK is COMPLEX*16 array, dimension (NB*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The matrix V stores the elementary reflectors H(i) in the i-th column below the diagonal. For example, if M=5 and N=3, the matrix V is V = ( 1 ) ( v1 1 ) ( v1 v2 1 ) ( v1 v2 v3 ) ( v1 v2 v3 ) where the vi's represent the vectors which define H(i), which are returned in the matrix A. The 1's along the diagonal of V are not stored in A. Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each block is of order NB except for the last block, which is of order IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB for the last block) T's are stored in the NB-by-N matrix T as T = (T1 T2 ... TB). Definition at line 142 of file zgeqrt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 zgeqrt.f(3)
Man Page

Featured Tech Videos