Today's Posts

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for sptcon (centos section 3)

sptcon.f(3)						LAPACK						  sptcon.f(3)

sptcon.f -
Functions/Subroutines subroutine sptcon (N, D, E, ANORM, RCOND, WORK, INFO) SPTCON Function/Subroutine Documentation subroutine sptcon (integerN, real, dimension( * )D, real, dimension( * )E, realANORM, realRCOND, real, dimension( * )WORK, integerINFO) SPTCON Purpose: SPTCON computes the reciprocal of the condition number (in the 1-norm) of a real symmetric positive definite tridiagonal matrix using the factorization A = L*D*L**T or A = U**T*D*U computed by SPTTRF. Norm(inv(A)) is computed by a direct method, and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Parameters: N N is INTEGER The order of the matrix A. N >= 0. D D is REAL array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization of A, as computed by SPTTRF. E E is REAL array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidiagonal factor U or L from the factorization of A, as computed by SPTTRF. ANORM ANORM is REAL The 1-norm of the original matrix A. RCOND RCOND is REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the 1-norm of inv(A) computed in this routine. WORK WORK is REAL array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The method used is described in Nicholas J. Higham, "Efficient Algorithms for Computing the Condition Number of a Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. Definition at line 119 of file sptcon.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 sptcon.f(3)

All times are GMT -4. The time now is 03:46 PM.

Unix & Linux Forums Content Copyright 1993-2018. All Rights Reserved.
Show Password