Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for slantp (centos section 3)

slantp.f(3)				      LAPACK				      slantp.f(3)

NAME
       slantp.f -

SYNOPSIS
   Functions/Subroutines
       REAL function slantp (NORM, UPLO, DIAG, N, AP, WORK)
	   SLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,
	   or the element of largest absolute value of a triangular matrix supplied in packed
	   form.

Function/Subroutine Documentation
   REAL function slantp (characterNORM, characterUPLO, characterDIAG, integerN, real, dimension(
       * )AP, real, dimension( * )WORK)
       SLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
       the element of largest absolute value of a triangular matrix supplied in packed form.

       Purpose:

	    SLANTP  returns the value of the one norm,	or the Frobenius norm, or
	    the  infinity norm,  or the  element of  largest absolute value  of a
	    triangular matrix A, supplied in packed form.

       Returns:
	   SLANTP

	       SLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
			(
			( norm1(A),	    NORM = '1', 'O' or 'o'
			(
			( normI(A),	    NORM = 'I' or 'i'
			(
			( normF(A),	    NORM = 'F', 'f', 'E' or 'e'

	    where  norm1  denotes the  one norm of a matrix (maximum column sum),
	    normI  denotes the	infinity norm  of a matrix  (maximum row sum) and
	    normF  denotes the	Frobenius norm of a matrix (square root of sum of
	    squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.

       Parameters:
	   NORM

		     NORM is CHARACTER*1
		     Specifies the value to be returned in SLANTP as described
		     above.

	   UPLO

		     UPLO is CHARACTER*1
		     Specifies whether the matrix A is upper or lower triangular.
		     = 'U':  Upper triangular
		     = 'L':  Lower triangular

	   DIAG

		     DIAG is CHARACTER*1
		     Specifies whether or not the matrix A is unit triangular.
		     = 'N':  Non-unit triangular
		     = 'U':  Unit triangular

	   N

		     N is INTEGER
		     The order of the matrix A.  N >= 0.  When N = 0, SLANTP is
		     set to zero.

	   AP

		     AP is REAL array, dimension (N*(N+1)/2)
		     The upper or lower triangular matrix A, packed columnwise in
		     a linear array.  The j-th column of A is stored in the array
		     AP as follows:
		     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
		     if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
		     Note that when DIAG = 'U', the elements of the array AP
		     corresponding to the diagonal elements of the matrix A are
		     not referenced, but are assumed to be one.

	   WORK

		     WORK is REAL array, dimension (MAX(1,LWORK)),
		     where LWORK >= N when NORM = 'I'; otherwise, WORK is not
		     referenced.

       Author:
	   Univ. of Tennessee

	   Univ. of California Berkeley

	   Univ. of Colorado Denver

	   NAG Ltd.

       Date:
	   September 2012

       Definition at line 125 of file slantp.f.

Author
       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2				 Tue Sep 25 2012			      slantp.f(3)


All times are GMT -4. The time now is 02:50 PM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password