
sla_syamv.f(3) LAPACK sla_syamv.f(3)
NAME
sla_syamv.f 
SYNOPSIS
Functions/Subroutines
subroutine sla_syamv (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SLA_SYAMV computes a matrixvector product using a symmetric indefinite matrix to
calculate error bounds.
Function/Subroutine Documentation
subroutine sla_syamv (integerUPLO, integerN, realALPHA, real, dimension( lda, * )A,
integerLDA, real, dimension( * )X, integerINCX, realBETA, real, dimension( * )Y,
integerINCY)
SLA_SYAMV computes a matrixvector product using a symmetric indefinite matrix to
calculate error bounds.
Purpose:
SLA_SYAMV performs the matrixvector operation
y := alpha*abs(A)*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
n by n symmetric matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for blockstructure embedded in general matrices,
"symbolically" zero components are not perturbed. A zero
entry is considered "symbolic" if all multiplications involved
in computing that entry have at least one zero multiplicand.
Parameters:
UPLO
UPLO is INTEGER
On entry, UPLO specifies whether the upper or lower
triangular part of the array A is to be referenced as
follows:
UPLO = BLAS_UPPER Only the upper triangular part of A
is to be referenced.
UPLO = BLAS_LOWER Only the lower triangular part of A
is to be referenced.
Unchanged on exit.
N
N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA
ALPHA is REAL .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A
A is REAL array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients.
Unchanged on exit.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, n ).
Unchanged on exit.
X
X is REAL array, dimension
( 1 + ( n  1 )*abs( INCX ) )
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.
INCX
INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
BETA
BETA is REAL .
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.
Y
Y is REAL array, dimension
( 1 + ( n  1 )*abs( INCY ) )
Before entry with BETA nonzero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
INCY
INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Further Details:
Level 2 Blas routine.
 Written on 22October1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
 Modified for the absolutevalue product, April 2006
Jason Riedy, UC Berkeley
Definition at line 177 of file sla_syamv.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 sla_syamv.f(3) 
