
sgerq2.f(3) LAPACK sgerq2.f(3)
NAME
sgerq2.f 
SYNOPSIS
Functions/Subroutines
subroutine sgerq2 (M, N, A, LDA, TAU, WORK, INFO)
SGERQ2 computes the RQ factorization of a general rectangular matrix using an
unblocked algorithm.
Function/Subroutine Documentation
subroutine sgerq2 (integerM, integerN, real, dimension( lda, * )A, integerLDA, real,
dimension( * )TAU, real, dimension( * )WORK, integerINFO)
SGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked
algorithm.
Purpose:
SGERQ2 computes an RQ factorization of a real m by n matrix A:
A = R * Q.
Parameters:
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,nm+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (mn)th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the orthogonal matrix
Q as a product of elementary reflectors (see Further
Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is REAL array, dimension (M)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I  tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(nk+i+1:n) = 0 and v(nk+i) = 1; v(1:nk+i1) is stored on exit in
A(mk+i,1:nk+i1), and tau in TAU(i).
Definition at line 124 of file sgerq2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 sgerq2.f(3) 
