Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dtzrqf.f(3) [centos man page]

dtzrqf.f(3)							      LAPACK							       dtzrqf.f(3)

NAME
dtzrqf.f - SYNOPSIS
Functions/Subroutines subroutine dtzrqf (M, N, A, LDA, TAU, INFO) DTZRQF Function/Subroutine Documentation subroutine dtzrqf (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, integerINFO) DTZRQF Purpose: This routine is deprecated and has been replaced by routine DTZRZF. DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as A = ( R 0 ) * Z, where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= M. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an ( n - m ) element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of X. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A, such that the elements of z( k ) are in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). Definition at line 139 of file dtzrqf.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dtzrqf.f(3)

Check Out this Related Man Page

DTZRQF(l)								 )								 DTZRQF(l)

NAME
DTZRQF - routine is deprecated and has been replaced by routine DTZRZF SYNOPSIS
SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO ) INTEGER INFO, LDA, M, N DOUBLE PRECISION A( LDA, * ), TAU( * ) PURPOSE
This routine is deprecated and has been replaced by routine DTZRZF. DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as A = ( R 0 ) * Z, where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix. ARGUMENTS
M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= M. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value FURTHER DETAILS
The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an ( n - m ) element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of X. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A, such that the elements of z( k ) are in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). LAPACK version 3.0 15 June 2000 DTZRQF(l)
Man Page