
dtgevc.f(3) LAPACK dtgevc.f(3)
NAME
dtgevc.f 
SYNOPSIS
Functions/Subroutines
subroutine dtgevc (SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, LDVL, VR, LDVR, MM, M,
WORK, INFO)
DTGEVC
Function/Subroutine Documentation
subroutine dtgevc (characterSIDE, characterHOWMNY, logical, dimension( * )SELECT, integerN,
double precision, dimension( lds, * )S, integerLDS, double precision, dimension( ldp, *
)P, integerLDP, double precision, dimension( ldvl, * )VL, integerLDVL, double precision,
dimension( ldvr, * )VR, integerLDVR, integerMM, integerM, double precision, dimension( *
)WORK, integerINFO)
DTGEVC
Purpose:
DTGEVC computes some or all of the right and/or left eigenvectors of
a pair of real matrices (S,P), where S is a quasitriangular matrix
and P is upper triangular. Matrix pairs of this type are produced by
the generalized Schur factorization of a matrix pair (A,B):
A = Q*S*Z**T, B = Q*P*Z**T
as computed by DGGHRD + DHGEQZ.
The right eigenvector x and the left eigenvector y of (S,P)
corresponding to an eigenvalue w are defined by:
S*x = w*P*x, (y**H)*S = w*(y**H)*P,
where y**H denotes the conjugate tranpose of y.
The eigenvalues are not input to this routine, but are computed
directly from the diagonal blocks of S and P.
This routine returns the matrices X and/or Y of right and left
eigenvectors of (S,P), or the products Z*X and/or Q*Y,
where Z and Q are input matrices.
If Q and Z are the orthogonal factors from the generalized Schur
factorization of a matrix pair (A,B), then Z*X and Q*Y
are the matrices of right and left eigenvectors of (A,B).
Parameters:
SIDE
SIDE is CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY
HOWMNY is CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
backtransformed by the matrices in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT
SELECT is LOGICAL array, dimension (N)
If HOWMNY='S', SELECT specifies the eigenvectors to be
computed. If w(j) is a real eigenvalue, the corresponding
real eigenvector is computed if SELECT(j) is .TRUE..
If w(j) and w(j+1) are the real and imaginary parts of a
complex eigenvalue, the corresponding complex eigenvector
is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
set to .FALSE..
Not referenced if HOWMNY = 'A' or 'B'.
N
N is INTEGER
The order of the matrices S and P. N >= 0.
S
S is DOUBLE PRECISION array, dimension (LDS,N)
The upper quasitriangular matrix S from a generalized Schur
factorization, as computed by DHGEQZ.
LDS
LDS is INTEGER
The leading dimension of array S. LDS >= max(1,N).
P
P is DOUBLE PRECISION array, dimension (LDP,N)
The upper triangular matrix P from a generalized Schur
factorization, as computed by DHGEQZ.
2by2 diagonal blocks of P corresponding to 2by2 blocks
of S must be in positive diagonal form.
LDP
LDP is INTEGER
The leading dimension of array P. LDP >= max(1,N).
VL
VL is DOUBLE PRECISION array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an NbyN matrix Q (usually the orthogonal matrix Q
of left Schur vectors returned by DHGEQZ).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
SELECT, stored consecutively in the columns of
VL, in the same order as their eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part, and the second the imaginary part.
Not referenced if SIDE = 'R'.
LDVL
LDVL is INTEGER
The leading dimension of array VL. LDVL >= 1, and if
SIDE = 'L' or 'B', LDVL >= N.
VR
VR is DOUBLE PRECISION array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an NbyN matrix Z (usually the orthogonal matrix Z
of right Schur vectors returned by DHGEQZ).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
if HOWMNY = 'B' or 'b', the matrix Z*X;
if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
specified by SELECT, stored consecutively in the
columns of VR, in the same order as their
eigenvalues.
A complex eigenvector corresponding to a complex eigenvalue
is stored in two consecutive columns, the first holding the
real part and the second the imaginary part.
Not referenced if SIDE = 'L'.
LDVR
LDVR is INTEGER
The leading dimension of the array VR. LDVR >= 1, and if
SIDE = 'R' or 'B', LDVR >= N.
MM
MM is INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M
M is INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected real eigenvector occupies one
column and each selected complex eigenvector occupies two
columns.
WORK
WORK is DOUBLE PRECISION array, dimension (6*N)
INFO
INFO is INTEGER
= 0: successful exit.
< 0: if INFO = i, the ith argument had an illegal value.
> 0: the 2by2 block (INFO:INFO+1) does not have a complex
eigenvalue.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
Allocation of workspace:
  
WORK( j ) = 1norm of jth column of A, above the diagonal
WORK( N+j ) = 1norm of jth column of B, above the diagonal
WORK( 2*N+1:3*N ) = real part of eigenvector
WORK( 3*N+1:4*N ) = imaginary part of eigenvector
WORK( 4*N+1:5*N ) = real part of backtransformed eigenvector
WORK( 5*N+1:6*N ) = imaginary part of backtransformed eigenvector
Rowwise vs. columnwise solution methods:
    
Finding a generalized eigenvector consists basically of solving the
singular triangular system
(A  w B) x = 0 (for right) or: (A  w B)**H y = 0 (for left)
Consider finding the ith right eigenvector (assume all eigenvalues
are real). The equation to be solved is:
n i
0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
k=j k=j
where C = (A  w B) (The components v(i+1:n) are 0.)
The "rowwise" method is:
(1) v(i) := 1
for j = i1,. . .,1:
i
(2) compute s =  sum C(j,k) v(k) and
k=j+1
(3) v(j) := s / C(j,j)
Step 2 is sometimes called the "dot product" step, since it is an
inner product between the jth row and the portion of the eigenvector
that has been computed so far.
The "columnwise" method consists basically in doing the sums
for all the rows in parallel. As each v(j) is computed, the
contribution of v(j) times the jth column of C is added to the
partial sums. Since FORTRAN arrays are stored columnwise, this has
the advantage that at each step, the elements of C that are accessed
are adjacent to one another, whereas with the rowwise method, the
elements accessed at a step are spaced LDS (and LDP) words apart.
When finding left eigenvectors, the matrix in question is the
transpose of the one in storage, so the rowwise method then
actually accesses columns of A and B at each step, and so is the
preferred method.
Definition at line 295 of file dtgevc.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 dtgevc.f(3) 
