Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for dsygv.f (centos section 3)

dsygv.f(3)						LAPACK						   dsygv.f(3)

NAME
dsygv.f -
SYNOPSIS
Functions/Subroutines subroutine dsygv (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO) DSYGST Function/Subroutine Documentation subroutine dsygv (integerITYPE, characterJOBZ, characterUPLO, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( * )W, double precision, dimension( * )WORK, integerLWORK, integerINFO) DSYGST Purpose: DSYGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric and B is also positive definite. Parameters: ITYPE ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N N is INTEGER The order of the matrices A and B. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or the lower triangle (if UPLO='L') of A, including the diagonal, is destroyed. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is DOUBLE PRECISION array, dimension (LDB, N) On entry, the symmetric positive definite matrix B. If UPLO = 'U', the leading N-by-N upper triangular part of B contains the upper triangular part of the matrix B. If UPLO = 'L', the leading N-by-N lower triangular part of B contains the lower triangular part of the matrix B. On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). W W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. WORK WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The length of the array WORK. LWORK >= max(1,3*N-1). For optimal efficiency, LWORK >= (NB+2)*N, where NB is the blocksize for DSYTRD returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: DPOTRF or DSYEV returned an error code: <= N: if INFO = i, DSYEV failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 175 of file dsygv.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dsygv.f(3)


All times are GMT -4. The time now is 05:07 PM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password