
dsyevd.f(3) LAPACK dsyevd.f(3)
NAME
dsyevd.f 
SYNOPSIS
Functions/Subroutines
subroutine dsyevd (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO)
DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors
for SY matrices
Function/Subroutine Documentation
subroutine dsyevd (characterJOBZ, characterUPLO, integerN, double precision, dimension( lda, *
)A, integerLDA, double precision, dimension( * )W, double precision, dimension( * )WORK,
integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO)
DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for
SY matrices
Purpose:
DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A. If eigenvectors are desired, it uses a
divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray XMP, Cray YMP, Cray C90, or
Cray2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Because of large use of BLAS of level 3, DSYEVD needs N**2 more
workspace than DSYEVX.
Parameters:
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading NbyN upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading NbyN lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W
W is DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK
WORK is DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If N <= 1, LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
If JOBZ = 'V' and N > 1, LWORK must be at least
1 + 6*N + 2*N**2.
If LWORK = 1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK must be at least 1.
If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
If LIWORK = 1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = i and JOBZ = 'N', then the algorithm failed
to converge; i offdiagonal elements of an intermediate
tridiagonal form did not converge to zero;
if INFO = i and JOBZ = 'V', then the algorithm failed
to compute an eigenvalue while working on the submatrix
lying in rows and columns INFO/(N+1) through
mod(INFO,N+1).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee
Modified description of INFO. Sven, 16 Feb 05.
Definition at line 185 of file dsyevd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 dsyevd.f(3) 
