
dspsvx.f(3) LAPACK dspsvx.f(3)
NAME
dspsvx.f 
SYNOPSIS
Functions/Subroutines
subroutine dspsvx (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
WORK, IWORK, INFO)
DSPSVX computes the solution to system of linear equations A * X = B for OTHER
matrices
Function/Subroutine Documentation
subroutine dspsvx (characterFACT, characterUPLO, integerN, integerNRHS, double precision,
dimension( * )AP, double precision, dimension( * )AFP, integer, dimension( * )IPIV, double
precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X,
integerLDX, double precisionRCOND, double precision, dimension( * )FERR, double precision,
dimension( * )BERR, double precision, dimension( * )WORK, integer, dimension( * )IWORK,
integerINFO)
DSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Purpose:
DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
A = L*D*L**T to compute the solution to a real system of linear
equations A * X = B, where A is an NbyN symmetric matrix stored
in packed format and X and B are NbyNRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.
Description:
The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with
1by1 and 2by2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
Parameters:
FACT
FACT is CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AFP and IPIV contain the factored form of
A. AP, AFP and IPIV will not be modified.
= 'N': The matrix A will be copied to AFP and factored.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The jth column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j1)*(2*nj)/2) = A(i,j) for j<=i<=n.
See below for further details.
AFP
AFP is DOUBLE PRECISION array, dimension
(N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV
IPIV is INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by DSPTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1by1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k1) < 0, then rows and
columns k1 and IPIV(k) were interchanged and D(k1:k,k1:k)
is a 2by2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2by2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by DSPTRF.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The NbyNRHS right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the NbyNRHS solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND
RCOND is DOUBLE PRECISION
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the jth column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j)  XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Twodimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 277 of file dspsvx.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 dspsvx.f(3) 
