# CentOS 7.0 - man page for dsposv (centos section 3)

dsposv.f(3) LAPACK dsposv.f(3)dsposv.fNAME-Functions/Subroutines subroutine dsposv (UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, ITER, INFO) DSPOSV computes the solution to system of linear equations A * X = B for PO matricesSYNOPSISFunction/Subroutine Documentation subroutine dsposv (characterUPLO, integerN, integerNRHS, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X, integerLDX, double precision, dimension( n, * )WORK, real, dimension( * )SWORK, integerITER, integerINFO) DSPOSV computes the solution to system of linear equations A * X = B for PO matrices Purpose: DSPOSV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric positive definite matrix and X and B are N-by-NRHS matrices. DSPOSV first attempts to factorize the matrix in SINGLE PRECISION and use this factorization within an iterative refinement procedure to produce a solution with DOUBLE PRECISION normwise backward error quality (see below). If the approach fails the method switches to a DOUBLE PRECISION factorization and solve. The iterative refinement is not going to be a winning strategy if the ratio SINGLE PRECISION performance over DOUBLE PRECISION performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ILAENV in the future. Up to now, we always try iterative refinement. The iterative refinement process is stopped if ITER > ITERMAX or for all the RHS we have: RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX where o ITER is the number of the current iteration in the iterative refinement process o RNRM is the infinity-norm of the residual o XNRM is the infinity-norm of the solution o ANRM is the infinity-operator-norm of the matrix A o EPS is the machine epsilon returned by DLAMCH('Epsilon') The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if iterative refinement has been successfully used (INFO.EQ.0 and ITER.GE.0, see description below), then A is unchanged, if double precision factorization has been used (INFO.EQ.0 and ITER.LT.0, see description below), then the array A contains the factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is DOUBLE PRECISION array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is DOUBLE PRECISION array, dimension (LDX,NRHS) If INFO = 0, the N-by-NRHS solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (N,NRHS) This array is used to hold the residual vectors. SWORK SWORK is REAL array, dimension (N*(N+NRHS)) This array is used to use the single precision matrix and the right-hand sides or solutions in single precision. ITER ITER is INTEGER < 0: iterative refinement has failed, double precision factorization has been performed: the routine fell back to full precision for implementation- or machine-specific reasons-1: narrowing the precision induced an overflow, the routine fell back to full precision-2: failure of SPOTRF -31: stop the iterative refinement after the 30th iterations > 0: iterative refinement has been sucessfully used. Returns the number of iterations INFO INFO is INTEGER = 0: successful exit < 0: if INFO =-3, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i of (DOUBLE PRECISION) A is not positive definite, so the factorization could not be completed, and the solution has not been computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 199 of file dsposv.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 dsposv.f(3)