centos man page for dspgv

Query: dspgv

OS: centos

Section: 3

Format: Original Unix Latex Style Formatted with HTML and a Horizontal Scroll Bar

dspgv.f(3)							      LAPACK								dspgv.f(3)

NAME
dspgv.f -
SYNOPSIS
Functions/Subroutines subroutine dspgv (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO) DSPGST Function/Subroutine Documentation subroutine dspgv (integerITYPE, characterJOBZ, characterUPLO, integerN, double precision, dimension( * )AP, double precision, dimension( * )BP, double precision, dimension( * )W, double precision, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )WORK, integerINFO) DSPGST Purpose: DSPGV computes all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be symmetric, stored in packed format, and B is also positive definite. Parameters: ITYPE ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N N is INTEGER The order of the matrices A and B. N >= 0. AP AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, the contents of AP are destroyed. BP BP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix B, packed columnwise in a linear array. The j-th column of B is stored in the array BP as follows: if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. On exit, the triangular factor U or L from the Cholesky factorization B = U**T*U or B = L*L**T, in the same storage format as B. W W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**T*B*Z = I; if ITYPE = 3, Z**T*inv(B)*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (3*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: DPPTRF or DSPEV returned an error code: <= N: if INFO = i, DSPEV failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. > N: if INFO = n + i, for 1 <= i <= n, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 161 of file dspgv.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dspgv.f(3)
Related Man Pages
dspgv(3) - debian
sspgv.f(3) - debian
zhpgv.f(3) - debian
dspgv(3) - centos
sspgv(3) - centos