# dspevd.f(3) [centos man page]

dspevd.f(3) LAPACK dspevd.f(3)NAME

dspevd.f-SYNOPSIS

Functions/Subroutines subroutine dspevd (JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO) DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matricesFunction/Subroutine Documentation subroutine dspevd (characterJOBZ, characterUPLO, integerN, double precision, dimension( * )AP, double precision, dimension( * )W, double precision, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK, integerINFO) DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices Purpose: DSPEVD computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Parameters: JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N N is INTEGER The order of the matrix A. N >= 0. AP AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. On exit, AP is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite the corresponding elements of A, and if UPLO = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements of A. W W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the required LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + N**2. If LWORK =, then a workspace query is assumed; the routine only calculates the required sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. IWORK IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO = 0, IWORK(1) returns the required LIWORK. LIWORK LIWORK is INTEGER The dimension of the array IWORK. If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. If LIWORK =-1, then a workspace query is assumed; the routine only calculates the required sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value. > 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 179 of file dspevd.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 dspevd.f(3)