Home Man
Search
Today's Posts
Register

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for dsgesv.f (centos section 3)

dsgesv.f(3)						LAPACK						  dsgesv.f(3)

NAME
dsgesv.f -
SYNOPSIS
Functions/Subroutines subroutine dsgesv (N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, SWORK, ITER, INFO) DSGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision with iterative refinement) Function/Subroutine Documentation subroutine dsgesv (integerN, integerNRHS, double precision, dimension( lda, * )A, integerLDA, integer, dimension( * )IPIV, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X, integerLDX, double precision, dimension( n, * )WORK, real, dimension( * )SWORK, integerITER, integerINFO) DSGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision with iterative refinement) Purpose: DSGESV computes the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices. DSGESV first attempts to factorize the matrix in SINGLE PRECISION and use this factorization within an iterative refinement procedure to produce a solution with DOUBLE PRECISION normwise backward error quality (see below). If the approach fails the method switches to a DOUBLE PRECISION factorization and solve. The iterative refinement is not going to be a winning strategy if the ratio SINGLE PRECISION performance over DOUBLE PRECISION performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ILAENV in the future. Up to now, we always try iterative refinement. The iterative refinement process is stopped if ITER > ITERMAX or for all the RHS we have: RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX where o ITER is the number of the current iteration in the iterative refinement process o RNRM is the infinity-norm of the residual o XNRM is the infinity-norm of the solution o ANRM is the infinity-operator-norm of the matrix A o EPS is the machine epsilon returned by DLAMCH('Epsilon') The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 respectively. Parameters: N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N coefficient matrix A. On exit, if iterative refinement has been successfully used (INFO.EQ.0 and ITER.GE.0, see description below), then A is unchanged, if double precision factorization has been used (INFO.EQ.0 and ITER.LT.0, see description below), then the array A contains the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV IPIV is INTEGER array, dimension (N) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i). Corresponds either to the single precision factorization (if INFO.EQ.0 and ITER.GE.0) or the double precision factorization (if INFO.EQ.0 and ITER.LT.0). B B is DOUBLE PRECISION array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). X X is DOUBLE PRECISION array, dimension (LDX,NRHS) If INFO = 0, the N-by-NRHS solution matrix X. LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (N,NRHS) This array is used to hold the residual vectors. SWORK SWORK is REAL array, dimension (N*(N+NRHS)) This array is used to use the single precision matrix and the right-hand sides or solutions in single precision. ITER ITER is INTEGER < 0: iterative refinement has failed, double precision factorization has been performed -1 : the routine fell back to full precision for implementation- or machine-specific reasons -2 : narrowing the precision induced an overflow, the routine fell back to full precision -3 : failure of SGETRF -31: stop the iterative refinement after the 30th iterations > 0: iterative refinement has been sucessfully used. Returns the number of iterations INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 195 of file dsgesv.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dsgesv.f(3)


All times are GMT -4. The time now is 06:51 PM.

Unix & Linux Forums Content Copyrightę1993-2018. All Rights Reserved.
UNIX.COM Login
Username:
Password:  
Show Password