Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

dlatrz(3) [centos man page]

dlatrz.f(3)							      LAPACK							       dlatrz.f(3)

NAME
dlatrz.f - SYNOPSIS
Functions/Subroutines subroutine dlatrz (M, N, L, A, LDA, TAU, WORK) DLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations. Function/Subroutine Documentation subroutine dlatrz (integerM, integerN, integerL, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( * )WORK) DLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations. Purpose: DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal matrix and, R and A1 are M-by-M upper triangular matrices. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. L L is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors. WORK WORK is DOUBLE PRECISION array, dimension (M) Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA Further Details: The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). Definition at line 141 of file dlatrz.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dlatrz.f(3)

Check Out this Related Man Page

dlatrz.f(3)							      LAPACK							       dlatrz.f(3)

NAME
dlatrz.f - SYNOPSIS
Functions/Subroutines subroutine dlatrz (M, N, L, A, LDA, TAU, WORK) DLATRZ Function/Subroutine Documentation subroutine dlatrz (integerM, integerN, integerL, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( * )WORK) DLATRZ Purpose: DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal matrix and, R and A1 are M-by-M upper triangular matrices. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. L L is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU TAU is DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors. WORK WORK is DOUBLE PRECISION array, dimension (M) Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Contributors: A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA Further Details: The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). Definition at line 141 of file dlatrz.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.1 Sun May 26 2013 dlatrz.f(3)
Man Page