# dla_geamv(3) [centos man page]

dla_geamv.f(3) LAPACK dla_geamv.f(3)NAME

dla_geamv.f-SYNOPSIS

Functions/Subroutines subroutine dla_geamv (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY) DLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.Function/Subroutine Documentation subroutine dla_geamv (integerTRANS, integerM, integerN, double precisionALPHA, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )X, integerINCX, double precisionBETA, double precision, dimension( * )Y, integerINCY) DLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds. Purpose: DLA_GEAMV performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y), or y := alpha*abs(A)**T*abs(x) + beta*abs(y), where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. This function is primarily used in calculating error bounds. To protect against underflow during evaluation, components in the resulting vector are perturbed away from zero by (N+1) times the underflow threshold. To prevent unnecessarily large errors for block-structure embedded in general matrices, "symbolically" zero components are not perturbed. A zero entry is considered "symbolic" if all multiplications involved in computing that entry have at least one zero multiplicand. Parameters: TRANS TRANS is INTEGER On entry, TRANS specifies the operation to be performed as follows: BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) Unchanged on exit. M M is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N N is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. ALPHA ALPHA is DOUBLE PRECISION On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A A is DOUBLE PRECISION array of DIMENSION ( LDA, n ) Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. LDA LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. X X is DOUBLE PRECISION array, dimension ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA BETA is DOUBLE PRECISION On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y Y is DOUBLE PRECISION Array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY INCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 174 of file dla_geamv.f.AuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 dla_geamv.f(3)