# dgtcon(3) [centos man page]

dgtcon.f(3) LAPACK dgtcon.f(3)NAME

dgtcon.f-SYNOPSIS

Functions/Subroutines subroutine dgtcon (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, IWORK, INFO) DGTCONFunction/Subroutine Documentation subroutine dgtcon (characterNORM, integerN, double precision, dimension( * )DL, double precision, dimension( * )D, double precision, dimension( * )DU, double precision, dimension( * )DU2, integer, dimension( * )IPIV, double precisionANORM, double precisionRCOND, double precision, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO) DGTCON Purpose: DGTCON estimates the reciprocal of the condition number of a real tridiagonal matrix A using the LU factorization as computed by DGTTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Parameters: NORM NORM is CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. N N is INTEGER The order of the matrix A. N >= 0. DL DL is DOUBLE PRECISION array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A as computed by DGTTRF. D D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU DU is DOUBLE PRECISION array, dimension (N-1) The (n-1) elements of the first superdiagonal of U. DU2 DU2 is DOUBLE PRECISION array, dimension (N-2) The (n-2) elements of the second superdiagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. ANORM ANORM is DOUBLE PRECISION If NORM = '1' or 'O', the 1-norm of the original matrix A. If NORM = 'I', the infinity-norm of the original matrix A. RCOND RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. WORK WORK is DOUBLE PRECISION array, dimension (2*N) IWORK IWORK is INTEGER array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 146 of file dgtcon.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 dgtcon.f(3)

## Check Out this Related Man Page

zgtcon.f(3) LAPACK zgtcon.f(3)NAME

zgtcon.f-SYNOPSIS

Functions/Subroutines subroutine zgtcon (NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, INFO) ZGTCONFunction/Subroutine Documentation subroutine zgtcon (characterNORM, integerN, complex*16, dimension( * )DL, complex*16, dimension( * )D, complex*16, dimension( * )DU, complex*16, dimension( * )DU2, integer, dimension( * )IPIV, double precisionANORM, double precisionRCOND, complex*16, dimension( * )WORK, integerINFO) ZGTCON Purpose: ZGTCON estimates the reciprocal of the condition number of a complex tridiagonal matrix A using the LU factorization as computed by ZGTTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Parameters: NORM NORM is CHARACTER*1 Specifies whether the 1-norm condition number or the infinity-norm condition number is required: = '1' or 'O': 1-norm; = 'I': Infinity-norm. N N is INTEGER The order of the matrix A. N >= 0. DL DL is COMPLEX*16 array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A as computed by ZGTTRF. D D is COMPLEX*16 array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU DU is COMPLEX*16 array, dimension (N-1) The (n-1) elements of the first superdiagonal of U. DU2 DU2 is COMPLEX*16 array, dimension (N-2) The (n-2) elements of the second superdiagonal of U. IPIV IPIV is INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. ANORM ANORM is DOUBLE PRECISION If NORM = '1' or 'O', the 1-norm of the original matrix A. If NORM = 'I', the infinity-norm of the original matrix A. RCOND RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. WORK WORK is COMPLEX*16 array, dimension (2*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO =, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 141 of file zgtcon.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.1Sun May 26 2013 zgtcon.f(3)