
dgerfs.f(3) LAPACK dgerfs.f(3)
NAME
dgerfs.f 
SYNOPSIS
Functions/Subroutines
subroutine dgerfs (TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR,
WORK, IWORK, INFO)
DGERFS
Function/Subroutine Documentation
subroutine dgerfs (characterTRANS, integerN, integerNRHS, double precision, dimension( lda, *
)A, integerLDA, double precision, dimension( ldaf, * )AF, integerLDAF, integer, dimension(
* )IPIV, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension(
ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension(
* )BERR, double precision, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)
DGERFS
Purpose:
DGERFS improves the computed solution to a system of linear
equations and provides error bounds and backward error estimates for
the solution.
Parameters:
TRANS
TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
The original NbyN matrix A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is DOUBLE PRECISION array, dimension (LDAF,N)
The factors L and U from the factorization A = P*L*U
as computed by DGETRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices from DGETRF; for 1<=i<=N, row i of the
matrix was interchanged with row IPIV(i).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGETRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the jth column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j)  XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 185 of file dgerfs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 dgerfs.f(3) 
