
dgeqrt2.f(3) LAPACK dgeqrt2.f(3)
NAME
dgeqrt2.f 
SYNOPSIS
Functions/Subroutines
subroutine dgeqrt2 (M, N, A, LDA, T, LDT, INFO)
DGEQRT2 computes a QR factorization of a general real or complex matrix using the
compact WY representation of Q.
Function/Subroutine Documentation
subroutine dgeqrt2 (integerM, integerN, double precision, dimension( lda, * )A, integerLDA,
double precision, dimension( ldt, * )T, integerLDT, integerINFO)
DGEQRT2 computes a QR factorization of a general real or complex matrix using the compact
WY representation of Q.
Purpose:
DGEQRT2 computes a QR factorization of a real MbyN matrix A,
using the compact WY representation of Q.
Parameters:
M
M is INTEGER
The number of rows of the matrix A. M >= N.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the real MbyN matrix A. On exit, the elements on and
above the diagonal contain the NbyN upper triangular matrix R; the
elements below the diagonal are the columns of V. See below for
further details.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
T
T is DOUBLE PRECISION array, dimension (LDT,N)
The NbyN upper triangular factor of the block reflector.
The elements on and above the diagonal contain the block
reflector T; the elements below the diagonal are not used.
See below for further details.
LDT
LDT is INTEGER
The leading dimension of the array T. LDT >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Further Details:
The matrix V stores the elementary reflectors H(i) in the ith column
below the diagonal. For example, if M=5 and N=3, the matrix V is
V = ( 1 )
( v1 1 )
( v1 v2 1 )
( v1 v2 v3 )
( v1 v2 v3 )
where the vi's represent the vectors which define H(i), which are returned
in the matrix A. The 1's along the diagonal of V are not stored in A. The
block reflector H is then given by
H = I  V * T * V**T
where V**T is the transpose of V.
Definition at line 128 of file dgeqrt2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 dgeqrt2.f(3) 
