# CentOS 7.0 - man page for dgehd2 (centos section 3)

dgehd2.f(3) LAPACK dgehd2.f(3)dgehd2.fNAME-Functions/Subroutines subroutine dgehd2 (N, ILO, IHI, A, LDA, TAU, WORK, INFO) DGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.SYNOPSISFunction/Subroutine Documentation subroutine dgehd2 (integerN, integerILO, integerIHI, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( * )WORK, integerINFO) DGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm. Purpose: DGEHD2 reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: Q**T * A * Q = H . Parameters: N N is INTEGER The order of the matrix A. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to DGEBAL; otherwise they should be set to 1 and N respectively. See Further Details. 1 <= ILO <= IHI <= max(1,N). A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the n by n general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU TAU is DOUBLE PRECISION array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). WORK WORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit. < 0: if INFO =, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The matrix Q is represented as a product of (ihi-ilo) elementary reflectors Q = H(ilo) H(ilo+1) . . . H(ihi-1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on exit in A(i+2:ihi,i), and tau in TAU(i). The contents of A are illustrated by the following example, with n = 7, ilo = 2 and ihi = 6: on entry, on exit, ( a a a a a a a ) ( a a h h h h a ) ( a a a a a a ) ( a h h h h a ) ( a a a a a a ) ( h h h h h h ) ( a a a a a a ) ( v2 h h h h h ) ( a a a a a a ) ( v2 v3 h h h h ) ( a a a a a a ) ( v2 v3 v4 h h h ) ( a ) ( a ) where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). Definition at line 150 of file dgehd2.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 dgehd2.f(3)