Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

CentOS 7.0 - man page for dgeequ (centos section 3)

dgeequ.f(3)							      LAPACK							       dgeequ.f(3)

NAME
dgeequ.f -
SYNOPSIS
Functions/Subroutines subroutine dgeequ (M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO) DGEEQU Function/Subroutine Documentation subroutine dgeequ (integerM, integerN, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )R, double precision, dimension( * )C, double precisionROWCND, double precisionCOLCND, double precisionAMAX, integerINFO) DGEEQU Purpose: DGEEQU computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. R(i) and C(j) are restricted to be between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. Parameters: M M is INTEGER The number of rows of the matrix A. M >= 0. N N is INTEGER The number of columns of the matrix A. N >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) The M-by-N matrix whose equilibration factors are to be computed. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). R R is DOUBLE PRECISION array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A. C C is DOUBLE PRECISION array, dimension (N) If INFO = 0, C contains the column scale factors for A. ROWCND ROWCND is DOUBLE PRECISION If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R. COLCND COLCND is DOUBLE PRECISION If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C. AMAX AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 139 of file dgeequ.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 dgeequ.f(3)