
dbbcsd.f(3) LAPACK dbbcsd.f(3)
NAME
dbbcsd.f 
SYNOPSIS
Functions/Subroutines
subroutine dbbcsd (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA, PHI, U1, LDU1, U2,
LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK,
LWORK, INFO)
DBBCSD
Function/Subroutine Documentation
subroutine dbbcsd (characterJOBU1, characterJOBU2, characterJOBV1T, characterJOBV2T,
characterTRANS, integerM, integerP, integerQ, double precision, dimension( * )THETA,
double precision, dimension( * )PHI, double precision, dimension( ldu1, * )U1,
integerLDU1, double precision, dimension( ldu2, * )U2, integerLDU2, double precision,
dimension( ldv1t, * )V1T, integerLDV1T, double precision, dimension( ldv2t, * )V2T,
integerLDV2T, double precision, dimension( * )B11D, double precision, dimension( * )B11E,
double precision, dimension( * )B12D, double precision, dimension( * )B12E, double
precision, dimension( * )B21D, double precision, dimension( * )B21E, double precision,
dimension( * )B22D, double precision, dimension( * )B22E, double precision, dimension( *
)WORK, integerLWORK, integerINFO)
DBBCSD
Purpose:
DBBCSD computes the CS decomposition of an orthogonal matrix in
bidiagonalblock form,
[ B11  B12 0 0 ]
[ 0  0 I 0 ]
X = []
[ B21  B22 0 0 ]
[ 0  0 0 I ]
[ C  S 0 0 ]
[ U1  ] [ 0  0 I 0 ] [ V1  ]**T
= [] [] [] .
[  U2 ] [ S  C 0 0 ] [  V2 ]
[ 0  0 0 I ]
X is MbyM, its topleft block is PbyQ, and Q must be no larger
than P, MP, or MQ. (If Q is not the smallest index, then X must be
transposed and/or permuted. This can be done in constant time using
the TRANS and SIGNS options. See DORCSD for details.)
The bidiagonal matrices B11, B12, B21, and B22 are represented
implicitly by angles THETA(1:Q) and PHI(1:Q1).
The orthogonal matrices U1, U2, V1T, and V2T are input/output.
The input matrices are pre or postmultiplied by the appropriate
singular vector matrices.
Parameters:
JOBU1
JOBU1 is CHARACTER
= 'Y': U1 is updated;
otherwise: U1 is not updated.
JOBU2
JOBU2 is CHARACTER
= 'Y': U2 is updated;
otherwise: U2 is not updated.
JOBV1T
JOBV1T is CHARACTER
= 'Y': V1T is updated;
otherwise: V1T is not updated.
JOBV2T
JOBV2T is CHARACTER
= 'Y': V2T is updated;
otherwise: V2T is not updated.
TRANS
TRANS is CHARACTER
= 'T': X, U1, U2, V1T, and V2T are stored in rowmajor
order;
otherwise: X, U1, U2, V1T, and V2T are stored in column
major order.
M
M is INTEGER
The number of rows and columns in X, the orthogonal matrix in
bidiagonalblock form.
P
P is INTEGER
The number of rows in the topleft block of X. 0 <= P <= M.
Q
Q is INTEGER
The number of columns in the topleft block of X.
0 <= Q <= MIN(P,MP,MQ).
THETA
THETA is DOUBLE PRECISION array, dimension (Q)
On entry, the angles THETA(1),...,THETA(Q) that, along with
PHI(1), ...,PHI(Q1), define the matrix in bidiagonalblock
form. On exit, the angles whose cosines and sines define the
diagonal blocks in the CS decomposition.
PHI
PHI is DOUBLE PRECISION array, dimension (Q1)
The angles PHI(1),...,PHI(Q1) that, along with THETA(1),...,
THETA(Q), define the matrix in bidiagonalblock form.
U1
U1 is DOUBLE PRECISION array, dimension (LDU1,P)
On entry, an LDU1byP matrix. On exit, U1 is postmultiplied
by the left singular vector matrix common to [ B11 ; 0 ] and
[ B12 0 0 ; 0 I 0 0 ].
LDU1
LDU1 is INTEGER
The leading dimension of the array U1.
U2
U2 is DOUBLE PRECISION array, dimension (LDU2,MP)
On entry, an LDU2by(MP) matrix. On exit, U2 is
postmultiplied by the left singular vector matrix common to
[ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
LDU2
LDU2 is INTEGER
The leading dimension of the array U2.
V1T
V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
On entry, a LDV1TbyQ matrix. On exit, V1T is premultiplied
by the transpose of the right singular vector
matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
LDV1T
LDV1T is INTEGER
The leading dimension of the array V1T.
V2T
V2T is DOUBLE PRECISION array, dimenison (LDV2T,MQ)
On entry, a LDV2Tby(MQ) matrix. On exit, V2T is
premultiplied by the transpose of the right
singular vector matrix common to [ B12 0 0 ; 0 I 0 ] and
[ B22 0 0 ; 0 0 I ].
LDV2T
LDV2T is INTEGER
The leading dimension of the array V2T.
B11D
B11D is DOUBLE PRECISION array, dimension (Q)
When DBBCSD converges, B11D contains the cosines of THETA(1),
..., THETA(Q). If DBBCSD fails to converge, then B11D
contains the diagonal of the partially reduced topleft
block.
B11E
B11E is DOUBLE PRECISION array, dimension (Q1)
When DBBCSD converges, B11E contains zeros. If DBBCSD fails
to converge, then B11E contains the superdiagonal of the
partially reduced topleft block.
B12D
B12D is DOUBLE PRECISION array, dimension (Q)
When DBBCSD converges, B12D contains the negative sines of
THETA(1), ..., THETA(Q). If DBBCSD fails to converge, then
B12D contains the diagonal of the partially reduced topright
block.
B12E
B12E is DOUBLE PRECISION array, dimension (Q1)
When DBBCSD converges, B12E contains zeros. If DBBCSD fails
to converge, then B12E contains the subdiagonal of the
partially reduced topright block.
B21D
B21D is DOUBLE PRECISION array, dimension (Q)
When CBBCSD converges, B21D contains the negative sines of
THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
B21D contains the diagonal of the partially reduced bottomleft
block.
B21E
B21E is DOUBLE PRECISION array, dimension (Q1)
When CBBCSD converges, B21E contains zeros. If CBBCSD fails
to converge, then B21E contains the subdiagonal of the
partially reduced bottomleft block.
B22D
B22D is DOUBLE PRECISION array, dimension (Q)
When CBBCSD converges, B22D contains the negative sines of
THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
B22D contains the diagonal of the partially reduced bottomright
block.
B22E
B22E is DOUBLE PRECISION array, dimension (Q1)
When CBBCSD converges, B22E contains zeros. If CBBCSD fails
to converge, then B22E contains the subdiagonal of the
partially reduced bottomright block.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK. LWORK >= MAX(1,8*Q).
If LWORK = 1, then a workspace query is assumed; the
routine only calculates the optimal size of the WORK array,
returns this value as the first entry of the work array, and
no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit.
< 0: if INFO = i, the ith argument had an illegal value.
> 0: if DBBCSD did not converge, INFO specifies the number
of nonzero entries in PHI, and B11D, B11E, etc.,
contain the partially reduced matrix.
Internal Parameters:
TOLMUL DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(1/8)))
TOLMUL controls the convergence criterion of the QR loop.
Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
are within TOLMUL*EPS of either bound.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms,
50(1):3365, 2009.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 330 of file dbbcsd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 dbbcsd.f(3) 
