## Linux and UNIX Man Pages

Test Your Knowledge in Computers #918
Difficulty: Medium
Unix time is a single signed number which increments every millisecond.
True or False?

# cunmlq.f(3) [centos man page]

```cunmlq.f(3)							      LAPACK							       cunmlq.f(3)

NAME
cunmlq.f -

SYNOPSIS
Functions/Subroutines
subroutine cunmlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMLQ

Function/Subroutine Documentation
subroutine cunmlq (characterSIDE, characterTRANS, integerM, integerN, integerK, complex, dimension( lda, * )A, integerLDA, complex, dimension(
* )TAU, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, integerLWORK, integerINFO)
CUNMLQ

Purpose:

CUNMLQ overwrites the general complex M-by-N matrix C with

SIDE = 'L'	   SIDE = 'R'
TRANS = 'N':      Q * C	     C * Q
TRANS = 'C':      Q**H * C	     C * Q**H

where Q is a complex unitary matrix defined as the product of k
elementary reflectors

Q = H(k)**H . . . H(2)**H H(1)**H

as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters:
SIDE

SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS

TRANS is CHARACTER*1
= 'N':  No transpose, apply Q;
= 'C':  Conjugate transpose, apply Q**H.

M

M is INTEGER
The number of rows of the matrix C. M >= 0.

N

N is INTEGER
The number of columns of the matrix C. N >= 0.

K

K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A

A is COMPLEX array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
CGELQF in the first k rows of its array argument A.

LDA

LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU

TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGELQF.

C

C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK

WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO

INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value

Author:
Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:
November 2011

Definition at line 170 of file cunmlq.f.

Author
Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2							  Tue Sep 25 2012						       cunmlq.f(3)```

## Check Out this Related Man Page

```zunmlq.f(3)							      LAPACK							       zunmlq.f(3)

NAME
zunmlq.f -

SYNOPSIS
Functions/Subroutines
subroutine zunmlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
ZUNMLQ

Function/Subroutine Documentation
subroutine zunmlq (characterSIDE, characterTRANS, integerM, integerN, integerK, complex*16, dimension( lda, * )A, integerLDA, complex*16,
dimension( * )TAU, complex*16, dimension( ldc, * )C, integerLDC, complex*16, dimension( * )WORK, integerLWORK, integerINFO)
ZUNMLQ

Purpose:

ZUNMLQ overwrites the general complex M-by-N matrix C with

SIDE = 'L'	   SIDE = 'R'
TRANS = 'N':      Q * C	     C * Q
TRANS = 'C':      Q**H * C	     C * Q**H

where Q is a complex unitary matrix defined as the product of k
elementary reflectors

Q = H(k)**H . . . H(2)**H H(1)**H

as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters:
SIDE

SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS

TRANS is CHARACTER*1
= 'N':  No transpose, apply Q;
= 'C':  Conjugate transpose, apply Q**H.

M

M is INTEGER
The number of rows of the matrix C. M >= 0.

N

N is INTEGER
The number of columns of the matrix C. N >= 0.

K

K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A

A is COMPLEX*16 array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
ZGELQF in the first k rows of its array argument A.

LDA

LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU

TAU is COMPLEX*16 array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZGELQF.

C

C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC

LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK

WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO

INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value

Author:
Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Date:
November 2011

Definition at line 169 of file zunmlq.f.

Author
Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2							  Tue Sep 25 2012						       zunmlq.f(3)```