# cunmlq.f(3) [centos man page]

cunmlq.f(3) LAPACK cunmlq.f(3)NAME

cunmlq.f-SYNOPSIS

Functions/Subroutines subroutine cunmlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CUNMLQFunction/Subroutine Documentation subroutine cunmlq (characterSIDE, characterTRANS, integerM, integerN, integerK, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, integerLWORK, integerINFO) CUNMLQ Purpose: CUNMLQ overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. TRANS TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H. M M is INTEGER The number of rows of the matrix C. M >= 0. N N is INTEGER The number of columns of the matrix C. N >= 0. K K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A A is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K). TAU TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF. C C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 170 of file cunmlq.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cunmlq.f(3)

## Check Out this Related Man Page

NAME

cunmlq.f-SYNOPSIS

Functions/Subroutines subroutine cunmlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CUNMLQFunction/Subroutine Documentation subroutine cunmlq (characterSIDE, characterTRANS, integerM, integerN, integerK, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, integerLWORK, integerINFO) CUNMLQ Purpose: CUNMLQ overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. TRANS TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H. M M is INTEGER The number of rows of the matrix C. M >= 0. N N is INTEGER The number of columns of the matrix C. N >= 0. K K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A A is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K). TAU TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF. C C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK =, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO =-1, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 170 of file cunmlq.f.-iAuthorGenerated automatically by Doxygen for LAPACK from the source code.Version 3.4.2Tue Sep 25 2012 cunmlq.f(3)