Linux and UNIX Man Pages

Linux & Unix Commands - Search Man Pages

cunglq.f(3) [centos man page]

cunglq.f(3)							      LAPACK							       cunglq.f(3)

NAME
cunglq.f - SYNOPSIS
Functions/Subroutines subroutine cunglq (M, N, K, A, LDA, TAU, WORK, LWORK, INFO) CUNGLQ Function/Subroutine Documentation subroutine cunglq (integerM, integerN, integerK, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( * )WORK, integerLWORK, integerINFO) CUNGLQ Purpose: CUNGLQ generates an M-by-N complex matrix Q with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)**H . . . H(2)**H H(1)**H as returned by CGELQF. Parameters: M M is INTEGER The number of rows of the matrix Q. M >= 0. N N is INTEGER The number of columns of the matrix Q. N >= M. K K is INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A. On exit, the M-by-N matrix Q. LDA LDA is INTEGER The first dimension of the array A. LDA >= max(1,M). TAU TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF. WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument has an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 128 of file cunglq.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 cunglq.f(3)

Check Out this Related Man Page

CUNGLQ(l)								 )								 CUNGLQ(l)

NAME
CUNGLQ - generate an M-by-N complex matrix Q with orthonormal rows, SYNOPSIS
SUBROUTINE CUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER INFO, K, LDA, LWORK, M, N COMPLEX A( LDA, * ), TAU( * ), WORK( * ) PURPOSE
CUNGLQ generates an M-by-N complex matrix Q with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)' . . . H(2)' H(1)' as returned by CGELQF. ARGUMENTS
M (input) INTEGER The number of rows of the matrix Q. M >= 0. N (input) INTEGER The number of columns of the matrix Q. N >= M. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A. On exit, the M-by-N matrix Q. LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). TAU (input) COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument has an illegal value LAPACK version 3.0 15 June 2000 CUNGLQ(l)
Man Page

Featured Tech Videos