
cstegr.f(3) LAPACK cstegr.f(3)
NAME
cstegr.f 
SYNOPSIS
Functions/Subroutines
subroutine cstegr (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ,
WORK, LWORK, IWORK, LIWORK, INFO)
CSTEGR
Function/Subroutine Documentation
subroutine cstegr (characterJOBZ, characterRANGE, integerN, real, dimension( * )D, real,
dimension( * )E, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real,
dimension( * )W, complex, dimension( ldz, * )Z, integerLDZ, integer, dimension( * )ISUPPZ,
real, dimension( * )WORK, integerLWORK, integer, dimension( * )IWORK, integerLIWORK,
integerINFO)
CSTEGR
Purpose:
CSTEGR computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
a well defined set of pairwise different real eigenvalues, the corresponding
real eigenvectors are pairwise orthogonal.
The spectrum may be computed either completely or partially by specifying
either an interval (VL,VU] or a range of indices IL:IU for the desired
eigenvalues.
CSTEGR is a compatability wrapper around the improved CSTEMR routine.
See SSTEMR for further details.
One important change is that the ABSTOL parameter no longer provides any
benefit and hence is no longer used.
Note : CSTEGR and CSTEMR work only on machines which follow
IEEE754 floatingpoint standard in their handling of infinities and
NaNs. Normal execution may create these exceptiona values and hence
may abort due to a floating point exception in environments which
do not conform to the IEEE754 standard.
Parameters:
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE
RANGE is CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the halfopen interval (VL,VU]
will be found.
= 'I': the ILth through IUth eigenvalues will be found.
N
N is INTEGER
The order of the matrix. N >= 0.
D
D is REAL array, dimension (N)
On entry, the N diagonal elements of the tridiagonal matrix
T. On exit, D is overwritten.
E
E is REAL array, dimension (N)
On entry, the (N1) subdiagonal elements of the tridiagonal
matrix T in elements 1 to N1 of E. E(N) need not be set on
input, but is used internally as workspace.
On exit, E is overwritten.
VL
VL is REAL
VU
VU is REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
IL
IL is INTEGER
IU
IU is INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0.
Not referenced if RANGE = 'A' or 'V'.
ABSTOL
ABSTOL is REAL
Unused. Was the absolute error tolerance for the
eigenvalues/eigenvectors in previous versions.
M
M is INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IUIL+1.
W
W is REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
Z
Z is COMPLEX array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
contain the orthonormal eigenvectors of the matrix T
corresponding to the selected eigenvalues, with the ith
column of Z holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
Supplying N columns is always safe.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', then LDZ >= max(1,N).
ISUPPZ
ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The ith computed eigenvector
is nonzero only in elements ISUPPZ( 2*i1 ) through
ISUPPZ( 2*i ). This is relevant in the case when the matrix
is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
WORK
WORK is REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
(and minimal) LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,18*N)
if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
If LWORK = 1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of the array IWORK. LIWORK >= max(1,10*N)
if the eigenvectors are desired, and LIWORK >= max(1,8*N)
if only the eigenvalues are to be computed.
If LIWORK = 1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
On exit, INFO
= 0: successful exit
< 0: if INFO = i, the ith argument had an illegal value
> 0: if INFO = 1X, internal error in SLARRE,
if INFO = 2X, internal error in CLARRV.
Here, the digit X = ABS( IINFO ) < 10, where IINFO is
the nonzero error code returned by SLARRE or
CLARRV, respectively.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Inderjit Dhillon, IBM Almaden, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, LBNL/NERSC, USA
Definition at line 255 of file cstegr.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Tue Sep 25 2012 cstegr.f(3) 
