Visit Our UNIX and Linux User Community

Linux and UNIX Man Pages

Test Your Knowledge in Computers #275
Difficulty: Easy
OpenSolaris is the only version of the System V variant of UNIX available as open source.
True or False?
Linux & Unix Commands - Search Man Pages

clangt.f(3) [centos man page]

clangt.f(3)							      LAPACK							       clangt.f(3)

NAME
clangt.f - SYNOPSIS
Functions/Subroutines REAL function clangt (NORM, N, DL, D, DU) CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Function/Subroutine Documentation REAL function clangt (characterNORM, integerN, complex, dimension( * )DL, complex, dimension( * )D, complex, dimension( * )DU) CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Purpose: CLANGT returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex tridiagonal matrix A. Returns: CLANGT CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in CLANGT as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, CLANGT is set to zero. DL DL is COMPLEX array, dimension (N-1) The (n-1) sub-diagonal elements of A. D D is COMPLEX array, dimension (N) The diagonal elements of A. DU DU is COMPLEX array, dimension (N-1) The (n-1) super-diagonal elements of A. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 107 of file clangt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 clangt.f(3)

Check Out this Related Man Page

slangt.f(3)							      LAPACK							       slangt.f(3)

NAME
slangt.f - SYNOPSIS
Functions/Subroutines REAL function slangt (NORM, N, DL, D, DU) SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Function/Subroutine Documentation REAL function slangt (characterNORM, integerN, real, dimension( * )DL, real, dimension( * )D, real, dimension( * )DU) SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Purpose: SLANGT returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real tridiagonal matrix A. Returns: SLANGT SLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in SLANGT as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANGT is set to zero. DL DL is REAL array, dimension (N-1) The (n-1) sub-diagonal elements of A. D D is REAL array, dimension (N) The diagonal elements of A. DU DU is REAL array, dimension (N-1) The (n-1) super-diagonal elements of A. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 107 of file slangt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 slangt.f(3)

Featured Tech Videos