Visit Our UNIX and Linux User Community

Linux and UNIX Man Pages

Test Your Knowledge in Computers #306
Difficulty: Easy
The HTML4 standard was published in 2014.
True or False?
Linux & Unix Commands - Search Man Pages

clangt.f(3) [centos man page]

clangt.f(3)							      LAPACK							       clangt.f(3)

NAME
clangt.f - SYNOPSIS
Functions/Subroutines REAL function clangt (NORM, N, DL, D, DU) CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Function/Subroutine Documentation REAL function clangt (characterNORM, integerN, complex, dimension( * )DL, complex, dimension( * )D, complex, dimension( * )DU) CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Purpose: CLANGT returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex tridiagonal matrix A. Returns: CLANGT CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in CLANGT as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, CLANGT is set to zero. DL DL is COMPLEX array, dimension (N-1) The (n-1) sub-diagonal elements of A. D D is COMPLEX array, dimension (N) The diagonal elements of A. DU DU is COMPLEX array, dimension (N-1) The (n-1) super-diagonal elements of A. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 107 of file clangt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 clangt.f(3)

Check Out this Related Man Page

zlangt.f(3)							      LAPACK							       zlangt.f(3)

NAME
zlangt.f - SYNOPSIS
Functions/Subroutines DOUBLE PRECISION function zlangt (NORM, N, DL, D, DU) ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Function/Subroutine Documentation DOUBLE PRECISION function zlangt (characterNORM, integerN, complex*16, dimension( * )DL, complex*16, dimension( * )D, complex*16, dimension( * )DU) ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. Purpose: ZLANGT returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex tridiagonal matrix A. Returns: ZLANGT ZLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in ZLANGT as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, ZLANGT is set to zero. DL DL is COMPLEX*16 array, dimension (N-1) The (n-1) sub-diagonal elements of A. D D is COMPLEX*16 array, dimension (N) The diagonal elements of A. DU DU is COMPLEX*16 array, dimension (N-1) The (n-1) super-diagonal elements of A. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Definition at line 107 of file zlangt.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Tue Sep 25 2012 zlangt.f(3)

Featured Tech Videos